期刊文献+

基于竞争学习网络的中文关键字提取算法

Chinese Keyword Extraction Algorithm Based on Competitive Learning Network
下载PDF
导出
摘要 为提高中文关键字的提取准确率,提出一种基于竞争学习网络的中文关键字提取算法。对文章进行分词,得到单个词组或短语,视其为单个神经元,将神经元输入竞争学习网络的输入层,通过竞争层上神经元的相互竞争,获得一个或几个活跃的神经元,使用合并权值及聚类分析方法得到文章的关键字。实验结果表明,该算法提取关键字的平均命中率高于词频-逆文档频率算法和传统的词频算法,鲁棒性较好。 To solve this problem about the accuracy of the present Chinese keyword extraction algorithm,this paper presents a new keyword extraction algorithm based on competitive learning network.The algorithm adopts the method that it takes the divided word which comes from the Chinese article as the single neuron.And it can get one or more active neurons after these neurons are input the input layer and compete with each other on the competition layer.The keywords of the Chinese article are obtained through merging the weights and clustering analysis.Experimental results show that the hit rate of extracting keywords with this algorithm is higher than the algorithm of Term Frequency-inverse Document Frequency(TF-IDE) and the traditional algorithm named Term Frequency(TF),and has a good robustness.
出处 《计算机工程》 CAS CSCD 2013年第2期207-210,215,共5页 Computer Engineering
关键词 关键字提取 平均命中率 竞争学习网络 神经元 输入层 竞争层 keyword extraction average hit rate competitive learning network neuron input layer competitive layer
  • 相关文献

参考文献9

二级参考文献32

  • 1张敏,耿焕同,王煦法.一种利用BC方法的关键词自动提取算法研究[J].小型微型计算机系统,2007,28(1):189-192. 被引量:19
  • 2孔令波,唐世渭,杨冬青,王腾蛟,高军.XML信息检索中最小子树根节点问题的分层算法[J].软件学报,2007,18(4):919-932. 被引量:23
  • 3Possas B, Ziviani N, Meira W, Ribeiro-Neto B. Set- based vector model: An efficient approach for correlation based ranking [J]. ACM Transactions on Information Systems, 2005, 23(4) : 397-429.
  • 4Hammouda K M, KamelMS. Efficient phras-based document indexing for Web document clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(10):1279-1296.
  • 5Saraiva, P. C., Moura, E. S., Ziviani, N. Rank-Preserving two-level caching for scalable search engines [C]//Proceedings of the 24th Annual international ACM SIGIR Conference on Research and Development in information Retrieval (New Orleans, Louisiana, United States). SIGIR'01. ACM Press, New York, NY, 2008, 51-58.
  • 6Jansen B. J., Spink, A., Bateman, J., and Saracevic, T. Real life information retrieval: A study of user queries on the web[C]//ACM SIGIR Forum. SIGIR'98. New York, NY, 1998, 32(1): 5-17.
  • 7GUO L,SHAO F,BOTEV C,et al.XRANK:Ranked keywordsearch over XML documents[C]//Proceedings of the 2003 ACMSIGMOD International Conference on Management of Data.NewYork:ACM Press,2003:16-27.
  • 8LIU Z Y,CHEN Y.Identifying meaningful return information forXML keyword search[C]//Proceedings of the ACM SIGMOD Inter-national Conference on Management of Data.New York:ACMPress,2007:329-340.
  • 9XU Y,PAPAKONSTANTINOU Y.Efficient keyword search forsmallest LCAs in XML databases[C]//Proceedings of the ACMSIGMOD International Conference on Management of Data.NewYork:ACM Press,2005:537-538.
  • 10同济大学数学教研室.线性代数[M].第3版.北京:高等教育出版社,1999..14-15.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部