期刊文献+

海洋拖曳系统运动方程的变步长有限差分数值仿真 被引量:2

Numerical Simulation of Underwater Towed System Using Finite Difference Method with Variational Step
下载PDF
导出
摘要 有限差分算法是常用的海洋拖曳系统运动仿真计算方法,传统的有限差分算法在对拖缆进行离散时,采用固定空间步长,为了提高数值计算的精度,通常需要减小空间步长,这既增加了计算时间,又浪费了计算机内存,甚至造成无法仿真一些工况。针对这一问题,提出了变步长有限差分数值算法,给出了步长变化的设定原则与算法,在建立海洋拖曳系统运动模型的基础上,系统分析了这一方法的求解思想与过程,并分别采用传统固定步长有限差分算法(大空间步长和小空间步长)和变步长有限差分算法,对模型进行了数值仿真,结果表明:变步长有限差分算法不仅保证了仿真计算精度,而且降低了计算机内存需求量,减少了计算时间。此外,变步长有限差分算法具有较高的灵活性,可根据实际情况,综合考虑计算时间、内存需求量和计算结果精度,从而选择合适的空间步长变化规律。 The finite difference method is often used in the simulation of underwater towed system. In normal finite differ- ence method, the towed cable is discrete and the step is fixed. In order to enhance the accuracy of the simulation result, the step should be small, but the simulation time and requirement of memory in process become large, and even some operation conditions can't be simulated. For this reason, the finite difference method with variational step is proposed to the simulation of underwater towed system. The rule and algorithm of variational step are given and the equations of towed system are estab- hshed. Based on these equations, the solving idea and process are put forward. The numerical simulations are implemented using the finite difference method with large step, small step and variational step. The numerical results show that the finite difference method with variational step is accurate. Moreover, the computing time and computer memory are reduced. The fi- nite difference method is flexible and the step can be set according to the computing time, the requirement of memory in process and the accuracy of computed results.
出处 《指挥控制与仿真》 2013年第1期95-101,共7页 Command Control & Simulation
基金 "十二五"国防预研基金项目
关键词 海洋拖曳系统 有限差分法 变步长 数值仿真 underwater towed system finite difference scheme variational step numerical simulation
  • 相关文献

参考文献13

  • 1叶果洛夫.水下拖曳系统[M]北京:海洋出版社,1989.
  • 2Walton T S,Polachek H. Calculation of Transient Motion of Submerged Cables[J].Mathematics of Computation,1960.27-46.
  • 3Albow C M,Schechter S. Numerical Simulation of Undersea Cable Dynamics[J].Ocean Engineering,1983,(06):443-457.
  • 4Engseth A. Efficient Method for Analysis of Flexible Risers[M].In:Proceedings of Behavior of Offshore Structures,1988.1357-1371.
  • 5Leonard J W,Nath J H. Comparison of Finite Element and Lumped Parameter Methods for Ocean Cables[J].Eng-ineering Structures,1981,(03):153-167.
  • 6Chiou R B,Leonard J W. Nonlinear Hydrodynamic Response of Curved Singly Connected Cables[A].Balkema:Rotterdam,1991.412-424.
  • 7Sun F J,Zhu Z H,LaRosa M. Dynamic Modeling of Cable Towed Body Using Nodal Position Finite Element Method[J].Ocean Engineering,2011,(04):529-540.
  • 8Vaz M A,Patel M H. Transient Behavior of Towed Marine Cables in Two Dimensions[J].Ocean Engineering,1995,(03):143-153.
  • 9Bhattacharyya S K,Vendhan C P. The Finite Element Method for Hydroelastic Instability of Underwater Towed Cylindrical Structures[J].Journal of Sound and Vibration,2000,(01):119-143.doi:10.1006/jsvi.2000.3023.
  • 10Ciarlet P G,Lions J L. Handbook of Numerical Analysis[M].New York:Elsevier,1990.

二级参考文献3

  • 1GOBAT J I, GROSENBAUGH M A. Time-domain numerical simulation of ocean cable structures [ J ]. Ocean Engineering,2006, 33,1373 - 1400.
  • 2ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[ J ]. Ocean Engineering, 1983,10 (6) .443 - 457.
  • 3MILINAZZO F, WILKIE M, LATCHMAN S A. An efficient algorithm for simulating the dynamics of towed cable systems[ J ]. Ocean Engineering, 1987, 14 ( 6 ), 513 - 526.

共引文献1

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部