期刊文献+

阵列射流/相变耦合换热实验研究 被引量:2

Investigation on the Jet Impingement/Boiling Heat Transfer
原文传递
导出
摘要 建立了一套泵驱动R134a工质阵列射流/相变耦合冷却的实验系统,实验研究了超高热流密度条件下系统的冷却性能,分析了工质流量、热负荷、相变潜热等因素对系统换热性能的影响。结果表明,将相变引入射流冷却中可以有效提高射流换热能力,实验控制流量Q_v≤1.2 L·min^(-1)·cm^(-2),热流密度为305 W/cm^2的条件下,控制发热体表面温度为57.61℃。 Jet impingement/boiling heat transfer were experimentally studied using R134a as the working fluid. The heat transfer on high heat flux was studied and the fluid flow flux and latent heat of the working fluid on heat transfer were also studied. Data on heat transfer were achieved and the results show that the heat transfer coefficients were effectively improved while boiling was introduced into jet impingement. In this study, with an average liquid flow flux of 1.2 L.min-1.cm-2, a maximum surface heat flux of 305 W/cm2 was achieved while the temperature of heater surface was 57.61℃.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第3期546-549,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51225602)
关键词 阵列射流 相变 超高热流密度 jet arrays impingement phase change high heat flux
  • 相关文献

参考文献8

  • 1张忠江,夏国栋,马晓雁,齐景智.高效微射流阵列冷却热沉传热特性[J].工程热物理学报,2007,28(3):448-450. 被引量:4
  • 2徐超,何雅玲,杨卫卫,齐永强.现代电子器件冷却方法研究动态[J].制冷与空调,2003,3(4):10-13. 被引量:34
  • 3Matteo Fabbri,Vijay K Dhir.Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets[].Journal of Heat Transfer.2005
  • 4D.J. Womac,F.P. Incopera,S. Ramadhyani.Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets[].ASME Jornal of Heat Transfer.1994
  • 5Whelan B P,Robinson A J.Nozzle geometry effects in liquid jet array impingement[].Applied Thermal Engineering.2009
  • 6Womac D J,Ramadhuani S,Incropera F P.Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets[].Journal of Heat Transfer.1993
  • 7Fabbri M,Jiang Shanjuan,Dhir V K.A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets[].Transactions of the ASME.2005
  • 8Pan Y,Webb B W.Heat Transfer Characteristics of Arrays of Free-Surface Liquid Jets[].Transactions of the ASME.1995

二级参考文献21

  • 1刘青,夏国栋,刘启明,马晓雁.高效微射流阵列冷却热沉的数值模拟[J].自然科学进展,2005,15(8):987-992. 被引量:3
  • 2周德俭,吴兆华,覃匡宇.MCM热分析和热设计技术[J].电子工艺技术,1997,18(1):11-14. 被引量:10
  • 3G. Hanreich,J. Nicolics, L. Musiejovsky. High resolution thermal simulation of electronic components, Microelectronics Reliability, 2000,40: 2069--2076.
  • 4M. Janicki,A. Napieralski, Modelling electronic circuit radiation cooling using analytical thermal model, Microelectronics Journal, 2000,31 : 781 - 785.
  • 5G. I. Sultan. Enhancing forced convection heat transfer from multiple protruding heat sources simulating electronic components in a horizontal channel by passive cooling. Microelectronics Jounal, 2000,31 : 773 - 779.
  • 6Y. Oule-Amer, S. Chikh,K. Bouhadef. Forced convection cooling enhancement by use of porous materials. Int. J. Heat Mass Transfer, 1998,19 : 251 -- 258.
  • 7Mingoo Choi, Keumnam Cho. Liquid cooling for a multi - chip module. Int. J. Heat Mass Transfer, 2000,43 : 209 -- 218.
  • 8Charlotte Gillot,Alain Bricard. Single and two - phase heat exchangers for power electronic components. Int. J. Therm. Sci,2000,39:826--832.
  • 9Wu - Shung Fu, Suh - Jenq Yang. A new model for heat transfer of fins swinging back and forth in a flow. Int. J. Heat Mass Transfer,2001,44: 1687--1697.
  • 10Cristina H. Amon ,Janathi Murthy. MEMS - enabled thermal management of high - heat - flux devices EDIFICE embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science,2001,25:231--242.

共引文献36

同被引文献41

  • 1田沣.射流冷却技术研究[J].航空计算技术,2006,36(3):4-7. 被引量:7
  • 2VISKAN'FA R. Heat transfer to impinging isother malgas and flamejets[J]. Experimen[J].al Thermal Fluid Science, 1993. 15(2): 111 -134.
  • 3C-AR1MEIA.A S V. RICE R. A. Confined and sub merged liquid jet impingement heat transfer[J].ASME J Heat Transfer, 1995, 117(4): 871-877.
  • 4HUANG L, EL GENK M S. Heat transfer of an im- pinging jet on a flat surface[J]. International Journal of Heat [J]. Mass Transfer, 1994, 37(13): 1915- 1923.
  • 5LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle-plate spacings[J]. International Journal of Heat [J]. Mass Transfer, 1994, 37 (94): 1687- 1697.
  • 6ROBINSON A J, SCHNITZLER E. An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer[J]. Experimental Thermal g>- Fluid Science, 2007, 32(1) : 1-13.
  • 7SAN J Y, LAI M D. Optimum jet to-jet spacing of heat transfer for staggered arrays of impinging air jets [J]. International Journal of Heats [J]. Mass Trans- fer, 2001, 44(21): 3997-4007.
  • 8GARIMELI.A S V, NENAYDYKH B. Nozzle ge- ometry effects in liquid jet impingement heat transfer [J]. International Journal of Heat [J]. Mass Transfer, 1996, 39(14): 2915-2923.
  • 9WOMAC D J, INCROPERA F P, RAMADHYANI S. Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets [J].[J]. Journal of Heat Transfer, 1994, 116(2). 482- 486.
  • 10GARG J, ARIK M, WEAVER S, et al. Micro fluid- ic jets for thermal management of electronics[C]// Proc ASME Heat Transfer/Fluids Engineering Sum merConference. Charlotte= ASME, 2004= 647 -654.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部