摘要
从处理瞬态运动电磁问题的基本方法出发,对已有的研究方法进行了总结。通过引入流体动力学中的概念,将处理电磁运动问题方法分为欧拉描述和拉格朗日描述,推导了两者之间的关系。给出了两种描述下的涡流场控制方程,指出了速度项对涡流项的影响。验证了拉格朗日描述下,转子运动后对其刚度矩阵的影响。由于欧拉描述和拉格朗日描述存在各自的缺点,采用欧拉描述和拉格朗日描述相结合的时步有限元法来处理含运动导体的涡流问题。以一台三相异步感应电机为例,分析其空载起动过程。通过计算得到定子三相电流、电磁转矩、电机转速随时间的变化关系,很好地验证了该方法在处理此类运动问题的有效性。
Based on the method of dealing with the motion electromagnetic problems, a summary of existing research methods was done. By introducing the concept from the fluid dynamics, the ways were divided into the Eulerian description and the Lagrangian description, and the relationship between two parts was derived. Then the eddy current field control equations with the descriptions were described, respectively. Then, we pointed out the impact of speed item to the eddy current, and we verified that the moving rotor's stiffness matrix was not changed. For both of the Eulerian description and Lagrangian description had its own shortcomings, in this paper, we used a way by combining the Eulerian and Lagrangian description with time-stepping finite element method to deal with the moving conductor eddy current problems. A three-phase asynchronous induction motor was proposed to analyze the no-load startup process. The result of stator phase current with time, electromagnetic torque with time, and motor speed with time, well verified the validity of the method in dealing with such movement
出处
《中国电机工程学报》
EI
CSCD
北大核心
2013年第6期168-175,23,共8页
Proceedings of the CSEE
基金
国家自然科学基金项目(50977066)
武汉大学博士研究生自主科研项目(2012207020202)~~
关键词
运动电磁问题
拉格朗日描述
欧拉描述
时步有限元法
motion electromagnetic problems
Lagrangian coordinate system
Eulerian coordinate system
time stepping element method