期刊文献+

基于非仿射随机波动率模型的期权定价研究 被引量:18

Option Pricing under Non-Affine Stochastic Volatility Model
原文传递
导出
摘要 本文应用快速傅里叶变换(FFT)方法,考虑了标的资产服从非仿射随机波动率模型下的期权定价问题。首先,应用偏微分方程扰动分析法,得到了标的资产对数价格分布的近似特征函数;然后,应用傅里叶变换及其逆变换,推导了欧式期权的拟闭型定价公式,对此公式应用FFT方法可以快速得到高精度数值解。数值实验表明,FFT期权定价方法是非常精确的和有效的;最后,给出了基于恒生指数认购权证的实证研究。实证结果表明,非仿射随机波动率期权定价模型比经典的Black-Scholes模型具有更高的定价精确性。 By applying the fast Fourier transform (FFT) method, the problem of option pricing when the underlying asset follows the non-affine stochastic volatility models is considered in this paper. Firstly, by utilizing a perturbation method to the partial differential equation of the characteristic function for the underlying log-asset price, an approximate solution for the characteristic function is derived. Then, a quasianalytical approximate formula for European options is attained by means of Fourier transform and its inverse. This formula is easy to implement and can be accurately and quickly computed by the FFT algorithm. Numerical examples show that the FFT-based option pricing method is very accurate and efficient. Finally, an empirical study of call warrants on Hang Seng index is presented. Empirical results demonstrate that the non-affine stochastic volatility option pricing model is more accurate than the classical Black- Scholes model.
出处 《中国管理科学》 CSSCI 北大核心 2013年第1期1-7,共7页 Chinese Journal of Management Science
基金 国家杰出青年科学基金项目(70825006) 教育部"长江学者和创新团队发展计划"项目(IRT0916) 国家自然科学基金创新研究群体科学基金项目(71221001)
关键词 期权定价 非仿射随机波动率 快速傅里叶变换 扰动法 option pricing non-affine stochastic volatility fast Fourier transform perturbation method
  • 相关文献

参考文献27

  • 1Black F,Scholes M. The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,(03):637-654.
  • 2Black F. Studies of stock price volatility changes[A].American Statistical Association,1976.
  • 3Christie A A. The stochastic behavior of common stock variances:value,leverage,and interest rate effects[J].Journal of Financial Economics,1982,(04):407-432.
  • 4Cox J C,Ross S A. The valuation of options for alternative stochastic processes[J].Journal of Financial Economics,1976,(1-2):145-166.
  • 5Merton R C. Option pricing when underlying stock returns are discontinuous[J].Journal of Financial Economics,1976,(1-2):125-144.
  • 6Hull J C,White A D. The pricing of options on asset with stochastic volatilities[J].Journal of Finance,1987,(02):281-300.
  • 7Stein E M,Stein J C. Stock price distributions with stochastic volatility:an analytic approach[J].Review of Financial Studies,1991.727-752.
  • 8Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J].Review of Financial Studies,1993,(02):327-343.
  • 9Andersen T G,Benzoni L,Lund J. Estimating jump-diffusions for equity returns[J].Journal of Finance,2002.1239-1284.
  • 10Chacko G,Viceira L. Spectral GMM estimation of continuous-time processes[J].Journal of Econometrics,2003.259-292.

同被引文献127

引证文献18

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部