期刊文献+

负载型双金属铁钯纳米催化降解微囊藻毒素-LR 被引量:2

Catalytic degradation of microcystin-LR using bentonite supported bimetallic Fe/Pd nanoparticles
原文传递
导出
摘要 探讨膨润土负载双金属铁钯(B-Fe/Pd)纳米材料催化降解微囊藻毒素-LR(MC-LR)的效果和机理.结果表明,在5mgL-1的MC-LR溶液中加入0.1g的纳米B-Fe/Pd,初始pH为6.86,振荡速度为250rmin-1,温度为298K的条件下,经过180min后对MC-LR的降解效率达96.86%.降解溶液的UV-vis和HPLC结果表明,MC-LR在238nm的特征峰消失.通过SEM-EDS、XRD、FTIR和XPS技术对B-Fe/Pd降解前后的样品进行表征,结果显示,降解后纳米B-Fe/Pd中的Fe形成了Fe的氧化物与氢氧化物.降解过程的动力学拟合结果显示,B-Fe/Pd降解MC-LR符合伪一级动力学,活化能为12.77kJmol-1.根据降解、表征和动力学结果分析其反应机理,推断是MC-LR首先吸附在B-Fe/Pd颗粒表面,接着纳米铁与水反应产生的氢气在Pd的催化作用下产生大量的氢自由基,并与MC-LR发生链式还原反应,使得MC-LR中最具毒性的共轭双键断开而降解. In this paper, bentonite supported bimetallic Fe/Pd nanoparticles (B-Fe/Pd) was explored to use for degradation of microcystin-LR (MC-LR). 96.86% of MC-LR was degraded after 180 min with an initial MC-LR concentration of 5 mg L-1 (pH 6.86) using 0.1 g B-Fe/Pd. UV-Vis and HPLC-UV showed that the peak of MC-LR at 238 nm was disappeared after B-Fe/Pd react with MC-LR. SEM-EDS, XRD, FTIR and XPS used for characterization of B-Fe/Pd before and after reaction with MC-LR revealed the formation of iron oxide and iron hydroxides after degradation of MC-LR. The degradation of MC-LC using B-Fe/Pd fitted well the pseudo-first kinetic order model with an activation energy was 12.77 kJ mo1-1. Degradation mechanism of MC-LR was proposed, which was based on firstly MC-LR adsorded in the surface of bentonite and iron nanoparticles-palladium particles, secondly iron nanoparticles reacted with water to produce hydrogen, and the formation of hydrogen radical by the Pd catalysis, finally MC-LR was reduced by hydrogen radical, where the most toxic conjugated double bond of MC-LR was broken by the reduction.
出处 《中国科学:化学》 CAS CSCD 北大核心 2013年第2期217-225,共9页 SCIENTIA SINICA Chimica
基金 福建师范大学"闽江学者"人才建设项目的资助
关键词 B—Fe P d纳米催化剂 微囊藻毒素-LR 降解机理 B-Fe/Pd, nanocatalyst, MC-LR, degradation mechanism
  • 相关文献

参考文献31

  • 1冯小刚,戎非,付德刚,袁春伟,胡艳.纳米TiO_(2)膜对水中微量微囊藻毒素的光催化降解[J].科学通报,2006,51(5):532-538. 被引量:10
  • 2Judy A, David C, Benjamin J. A review of cyanobacte ria and cyanotoxins removal/inactivatio n in drinking water treatment. Anal Bioanal Chem, 2010, 397: 1705-1714.
  • 3Wiegand C, Pflugmacher S, Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol, 2005, 203: 201-218.
  • 4Pendleton P, Schumann R, Wong SH. Microcystin-LR adsorption by activated carbon. J Coloid Interface Sci, 2001, 240: 1-8.
  • 5赵勇,李伟英,张明,董秉直.超滤膜对水中微囊藻毒素去除机理及影响因素研究[J].工业水处理,2010,30(4):26-29. 被引量:12
  • 6杨静,陈登霞,邓安平,方艳芬,罗光富,李德江,李瑞萍,黄应平.掺氮二氧化钛可见光照射降解微囊藻毒素-LR[J].中国科学:化学,2010,40(11):1688-1696. 被引量:13
  • 7乔瑞平,漆新华,孙承林,庄源益,李楠.Fenton试剂氧化降解微囊藻毒素-LR[J].环境化学,2007,26(5):614-617. 被引量:19
  • 8Gilmar AF. Kersanach R, Luciano da SP, Dellagostin OA, Yunes JS. Alexandre M. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicol Environ Saf, 2008, 69: 358-365.
  • 9Li XQ, Elliott DW, Zhang WX. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials andengineering aspects. Crit Rev Solid State Mat Sci, 2006, 31: 111-122.
  • 10Choi H, Al-Abed SR, Agarwal S. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon. Environ Sci Technol, 2009, 43: 7510-7515.

二级参考文献151

共引文献72

同被引文献37

  • 1俞秋蓉,胡和平,赵淑权.香烟中^(210)Po的含量[J].辐射防护,1993,13(1):72-75. 被引量:5
  • 2崔继文,孙瑞岩,李士伟,王力峰,那辉.十六烷基三甲基溴化铵直接处理钙基蒙脱土[J].吉林大学学报(理学版),2007,45(2):297-300. 被引量:11
  • 3Chert Z X, Jin X Y, Chen Z L, et al. 2011. Removal of methyl orange from aqueous solution using bentonite- supported nanoscale zero- valent iron [ J ]. Journal of Colloid and Interface Science, 363: 601-607.
  • 4Goti6 M M, Musi 6 S, 2007. Missbauerr, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions [ J ]. Journal of Molecular Structure, 834- 836 : 445- 453.
  • 5Haehem C, Bocquillon F, Zahraa, et al., 2001. Decolourization of textile industry wastewater by the photocatalytic degradation process [J]. Dyes and Pigments, 49: 117-125.
  • 6Hameed B, E1-Khaiary M. 2008. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies [ J ]. Journal of Hazardous Materials, 154:237-244.
  • 7HoagG, Collins J, Holcomb J, et al. 2009. Degradation of bromothylmol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols [ J ]. Journal of Materials Chememistry, 19 : 8671- 8677.
  • 8Iravani S, 2011. Green synthesis of metal nanoparticles using plants [ J ]. Green Chemistry, 13:2638-2650.
  • 9Ju Y, Qiao J, Peng X, et al. 2013. Photodegradation of malachite green using UV-vis light from two microwave-powered electrodeless discharge lamps ( MPEDL2 ) : further investigation on products, dominant routes and mechanism[ J]. Chemical Engineering Journal, 221 : 353-362.
  • 10Khan Z, Hussain J I, Hashmi A A. 2012. Shape-directing role of cetyhrimethylammoniuna bromide in the green synthesis of Ag- nanoparticles using Neem ( Azadirachta indica) leaf extract [ J ]. Colloids and Surfaces ( B : Biointerfaces) , 95 : 229-234.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部