期刊文献+

非线性光学格子中二阶孤子的传输特性研究

Study on the Characteristics of Two-order Soliton Propagation in Nonlinear Optical Lattice
原文传递
导出
摘要 数值研究了二阶孤子在具有横向折射率周期性调制的Kerr型光学格子中的传输特性,研究结果表明:横向折射率周期性调制会导致二阶孤子裂变成振幅大小不等的两基态孤子。当初始入射角大于某一临界值或调制周期与调制深度小于某一临界值时,裂变后大振幅基态孤子将跨越势阱向前传输;反之,它将被类似波导形式的路径俘获。而小振幅基态孤子将始终跨越势阱向前传输。因此光学格子中二阶孤子这种独特传输行为对光计算、全光通信以及新型光子器件开发等领域具有重要的理论和实际指导意义。 The propagation characteristics of two-order soliton were numerically studied in Kerr-type nonlinear medium with transverse periodic modulation of refractive index. It is shown that the periodic modulation will lead to the formation of two fundamental solitons with different amplitudes resulted form two-ordei: soliton's decay. Further, the fundamental soliton with big amplitude will propagate across the potential well when the incident angle is above a critical value or the rfiodulation depth and period are below a critical value; otherwise, it will propagate across the potential well. However, the one with small amplitude will always propagate across the potential well. Therefore, the special propagation behavior of two-order soliton in optical lattice is expected to show great potential for many applications such as optical calculation, all optical communication and the development of novel photonie devices, both theoretically and practically.
出处 《半导体光电》 CAS CSCD 北大核心 2013年第1期122-125,共4页 Semiconductor Optoelectronics
基金 湖南省科技计划项目(2010GK3049) 湖南省教改课题(2011(462)) 湖南第一师范学院课题项目(XYS10N10)
关键词 光电子学 二阶孤子 传输特性 光学格子 孤子衰变 optoelectronies two-order soliton propagtion characteristics optical lattice soliton decay
  • 相关文献

参考文献13

  • 1H asegawa A,Nyu T. Eigenvalue communication [J]. J. Lightwave Technol. , 1993,11(3): 395-399.
  • 2Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices [J ]. Nature,2003, 422(6928) 147-150.
  • 3Kartashov Y V,Zelenina A S, Torner L, et al. Spatial soliton switching in quasi-continuous optical arrays[J]. Opt. Lett. , 2004, 29(7): 766-768.
  • 4Kartashov Y V, Crasovan L C, Zelenina A S, et al. Soliton eigenvalue control in optical lattices[J]. Phys. Rev. Lett., 2004, 93(14): 143902.
  • 5Aleshkevich V A,Kartashov Y V, Zelenina A S, et al. Eigenvalue control and switching by fission of muhisoliton bound states in plannar waveguides[J]. Opt. Lett., 2004, 29(5): 483-485.
  • 6Kartashov Y V,Malomed B A, Torner L. Solitons in nonlinearlattices[J]. Rev. Mod. Phys, 2011,83(1), 247-305.
  • 7吴锦花,傅喜泉,文双春.一维光学格子孤子的传输特性及控制研究[J].物理学报,2006,55(4):1840-1845. 被引量:6
  • 8张景贵,文建国.光学格子中孤子的相互作用[J].光电子技术,2007,27(3):182-186. 被引量:1
  • 9Lederer F,Stegeman G I, Christodoulides D N, et al. Discrete solitons in optics[J]. Phys. Reports, 2008, 463(1/3) : 1-126.
  • 10Hasegawa A, Kodama Y. So[irons in optical communication[M]. New York: Oxford University Press, 1995.

二级参考文献16

  • 1郭旗,许超彬.偏离束腰入射对非局域非线性介质中高斯光束演化的影响[J].物理学报,2004,53(9):3025-3032. 被引量:41
  • 2吴锦花,傅喜泉,文双春.一维光学格子孤子的传输特性及控制研究[J].物理学报,2006,55(4):1840-1845. 被引量:6
  • 3Agrawal G P.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002.
  • 4Sackett A C, Gerton M J, Welling M. Measurements of collective collapse in a Bose-Einstein condensate with attractive interactions[J]. Phys. Rev. Lett, 1999, 82 (5): 876-879.
  • 5Fleischer J W, Mordechai S, Nikolaos K, et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices [J]. Nature, 2003, 422 (6928): 147-150.
  • 6Kartashov Y V, Zelenina A S, Torner L, et al. Spatial soliton switching in quasi-continuous optical arrays[J]. Opt. Lett, 2004, 29(7): 766-768.
  • 7Kartashov Y V, Torner L, Vysloukh V A, et al. Parametric amplification of soliton steering in optical lattices[J]. Opt. Lett, 2004, 29(10): 1 102-1 104.
  • 8Anderson D, Lisak M Bandwidth limits due to mutual pulse interaction in optical soliton communication systems[J]. Opt Lett, 1986, 11(2): 174-176.
  • 9Faddeev L D, Takhtajan J A. Hamiltonian Method in the Theory of Solitons[M]. Berlin: Springer Verlag,1987:300- 460.
  • 10Scharf R, Bishop A. Length-scale competition for the one-dimensional nonlinear Schrodinger equation with spatially periodic potentials[J]. Phys. Rev. E, 1993, 47(2): 1 375-1 383.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部