摘要
A calculation method for predicting the formation of alkali-silica gel and analyzing the relationship of ASR induced expansion and aggregate size was proposed. The complicated chemistry of alkali silica reaction was simplified to be controlled by the diffusion process of chemical ions into reactive aggregates. The transport of chemical ions was described by the Fick's law. The ASR induced expansion was assumed to be directly related to the volume of produced alkali-silica gel. The finally expansion of a representative volume element (RVE) of concrete was then calculated according to the ratio of volume of alkali-silica gel and RVE. The input parameters of the model contains radius of reactive aggregate, volume fraction of reactive aggregate, initial concentration of chemical ions and porosity of cement paste. The applicability of the model was validated by an experiment of ASR-affected concrete specimens containing glass aggregate. It is shown that the amount of alkali-silica gel and ASR induced expansion can be well predicted. The expansion increasing with the decreasing aggregate size can be reproduced by the proposed model.
A calculation method for predicting the formation of alkali-silica gel and analyzing the relationship of ASR induced expansion and aggregate size was proposed. The complicated chemistry of alkali silica reaction was simplified to be controlled by the diffusion process of chemical ions into reactive aggregates. The transport of chemical ions was described by the Fick's law. The ASR induced expansion was assumed to be directly related to the volume of produced alkali-silica gel. The finally expansion of a representative volume element (RVE) of concrete was then calculated according to the ratio of volume of alkali-silica gel and RVE. The input parameters of the model contains radius of reactive aggregate, volume fraction of reactive aggregate, initial concentration of chemical ions and porosity of cement paste. The applicability of the model was validated by an experiment of ASR-affected concrete specimens containing glass aggregate. It is shown that the amount of alkali-silica gel and ASR induced expansion can be well predicted. The expansion increasing with the decreasing aggregate size can be reproduced by the proposed model.
基金
Funded by the Major state Basic Research Development Program of China (973 Program) (No. 2009CB623203)