期刊文献+

双时滞van der Pol方程的数值Hopf分支 被引量:1

Analysis of numerical Hopf bifurcation for van der Pol equation with double time delays
下载PDF
导出
摘要 研究Runge-Kutta方法对以时滞为参数的双时滞van der Pol方程的数值Hopf分支问题。证明当该方程分支参数值在τ1=τ01处产生Hopf分支时,其数值解相应地在分支参数值τ1*=τ01+O(hp)处产生Hopf分支(p为Runge-Kutta方法的方法阶),且以解析解的分支参数值为极限,从而论证了双时滞van der Pol方程数值解保持其原解析解的动力学特性。 Numerical Hopf bifurcation of van der Pol equation with parametric double time delays is studied by using the method of Runge-Kutta. It is proved that, when analytic solution undergoes a Hopf bifurcation at rl = ~'~1, the numerical solution correspondingly undergoes a Hopf bifurcation at T1* = T^O1 + 0 (h^p) (p is the method order of Runge-Kutta) , and more ,the bifurcate point of analytic solution is absolute the limited point of the numerical one' s. Therefore, the numerical solution of van der Pol equation with double time delays maintains the dynamics characteristics of its original analytic solution under the method of Runge-Kutta.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第1期44-49,53,共7页 Journal of Natural Science of Heilongjiang University
关键词 双时滞 VAN der POL方程 RUNGE-KUTTA方法 数值Hopf分支 double time delays van der Pol Runge-Kutta method numerical Hopf bifurcation
  • 相关文献

参考文献3

二级参考文献20

  • 1魏俊杰,黄启昌.以滞量为参数的向日葵方程的Hopf分支[J].科学通报,1995,40(3):198-200. 被引量:8
  • 2戚翠玲,刘艳萍.一般动态市场价格系统的稳定性[J].新疆大学学报(自然科学版),2006,23(1):34-38. 被引量:3
  • 3KOTO T. Neimark-Sacker bifurcation in the Euler method for a delay differential equations[J]. BIT, 1999,39:110-115.
  • 4FORD N J, WULF V. The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations[J]. JCAM, 1999,111 : 153-162.
  • 5FORD N J, WULF V, Hopf bifurcation for numerical approximations to the delay logistic equation[J]. International Journal of Applied Science and Computations, 1999,6(3):167- 172.
  • 6FORD N J,WULF V. Numerical Hopf bifurcation for a class of delay differential equations[J]. JCAM,2000,115:601-616.
  • 7LIAO XIAOFENG. Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays[J], Chaos, Solitons and Fraetals, 2005,23 : 857-871.
  • 8IOOSS G. Bifurcation of maps and applications[M]. New York:North-Holland Publishing Company, 1979:15-150.
  • 9YU Chun-bo, WEI Jun-jie, ZHOU Xing-fu. Bifurcation Analysis in an Age-Structured Model of a Single Species Living in Two Identical Patches [ J]. Applied Mathematical Modelling, 2009, 34(4) : 1068-1077.
  • 10WANG A-ying, YU Chun-bo. Bifurcation Analysis in an Age-Structured Model of Single Species' Ei-ing in Two Identical Patches [ J]. Differential Equations and Dynamical Systems, 2008, 16(1/2) : 101-120.

共引文献3

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部