期刊文献+

搅拌釜内液-液混合溶析沉淀法制备纳米姜黄素颗粒 被引量:7

Liquid mixing and Curcumin nanoparticle preparation in stirred tanks
下载PDF
导出
摘要 研究了在搅拌釜内利用溶析沉淀法制备姜黄素纳米颗粒的过程,分别探讨了搅拌釜尺寸、搅拌形式、初始浓度以及搅拌转速对制备结果的影响。通过平面激光诱导荧光技术定量测量釜内液液混合行为,揭示了流体混合环境的控制是决定溶析沉淀产品过程的关键因素。实验表明,搅拌速度过低无法保证流体混合效率,将导致颗粒黏结;搅拌速度过高带来颗粒与流场的强剪切作用,引起颗粒破碎;局部过饱和度过大,引起颗粒的生长和聚团。搅拌釜内纳米颗粒制备需提供适度强化的流体混合环境。 The preparation of Curcumin nanoparticles was realized in a small stirred tank by the anti- solvent precipitation process. The influences of such factors as tank size, stirring style, initial concentration and rotation speed on nanoparticle preparation were investigated. Meanwhile, planar laser induced fluorescence (PLIF) technique was used to quantitatively measure the liquid-liquid mixing performance in the tank, and the mixing environment was found to be important for the preparation of nanoparticles. A low stirring speed in a small stirred tank with a turbine impeller could not achieve the desired mixing efficiency because of agglomeration of nanoparticles. An overly high stirring speed brought in strong shearing interaction between particles and fluid so that many particles were broken up. Overly high over-saturation in local areas would cause growth and agglomeration of particles. The optimal mixing environment with moderate process intensification was crucial to successfully prepare high quality Curcumin nanoparticles with spherical shape and narrow size distribution.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第3期841-848,共8页 CIESC Journal
基金 国家自然科学基金项目(20776074 20906057) 高等学校博士学科点专项科研基金项目(20090002110069)~~
关键词 搅拌釜 溶析沉淀 激光诱导荧光技术 姜黄素 纳米颗粒 stirred tank anti-solvent precipitation PLIF technique Curcumin nanoparticle
  • 相关文献

参考文献17

  • 1Kramers H, Baars G M, Knoll W H. A comparative study on the rate of mixing in stirred tanks [J]. Chemical Engineering Science, 1953, 2:35-42.
  • 2Fall A, Lecoq O, David R. Characterization of mixing in a stirred tank by planar laser induced fluorescence ( P. L. I. F. )[J]. Chemical Engineering Research and Design, 2001, 79:876-882.
  • 3胡银玉,刘喆,杨基础,程易.偏心搅拌反应器内的液相混合行为[J].化工学报,2010,61(10):2517-2522. 被引量:23
  • 4Shen L, Ji H F. Theoretical study on physicochemical properties of eurcumin [J]. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, 2007, 67: 619-623.
  • 5Raghvendra M S, Sarvieet S, Shiv K D, Krishna M, Ashok K. Immunomodulatory and therapeutic activity of curcumin[J]. International Immunopharmacology, 2011, 11:331-341.
  • 6Anand P, Kunnumakkara A B, Newman R A, Aggarwal B B. Bioavailability of curcumin: problems and promises [J]. Molecular Pharmaceutics, 2004, 4:807-818.
  • 7Rainer H M, Cornelia M K. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles [J]. Journal of Biotechnology, 2004, 113:151-170.
  • 8Harry G B, Susan J B, David E, David E B. Physical characterization of pharmaceutical solids [J]. Pharmaceutical Research, 1991, 8:963-973.
  • 9Liversidge E M, Liversidge G G, Cooper E R. Nanosizing: a formulation approach for poorly-water-soluble compounds [J]. European Journal of Pharmaceutical Sciences, 2003, 18:113-120.
  • 10Bernard V E, Guy V M, Patrick A. Top-down production of drug nanocrystals : nanosuspension stabilization, miniaturization and transformation into solid products[J]. International Journal of Pharmaceutics, 2008, 364: 64-75.

二级参考文献3

共引文献22

同被引文献100

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部