期刊文献+

低稀土含量的纳米复相α-Fe/Nd_2Fe_(14)B淬态合金微结构与微波电磁特性研究 被引量:2

Microstructure and Microwave Electromagnetic Properties of Rapidly Quenched α-Fe/Nd_2Fe_(14)B Nanocomposites with Low RE Content
原文传递
导出
摘要 对低稀土含量的Nd6Fe91B3合金进行熔体快淬处理,制备了由α-Fe相和少量的Nd2Fe14B相组成的纳米复相材料,并对其进行球磨处理25h。研究了快淬速度对淬态合金的相组成、微观结构、微波电磁性能的影响规律。研究结果表明,随着淬度的提高,淬态合金中高磁晶各向异性的Nd2Fe14B相逐渐减少,材料的自然共振频率向低频移动,但样品微波磁导率随淬速的提高而升高。淬速为40m/s的样品微波磁导率虚部在4.17GHz获得最大值μ"rmax=4.66,其实部在1.55GHz获得最大值μ'max=7.88。同时,低稀土含量的纳米复相α-Fe/Nd2Fe14B材料具有良好的微波电特性,其复介电常数在2GHz附近出现共振。由于磁损耗和电损耗共同作用,有利于该材料在GHz频段电磁波吸收材料中的应用。 The nanocomposites consisting of α-Fe and a small quantity of Nd2Fe14B have been prepared using rapid quenching from Nd6Fe91B3 melt with low rare earth content and ball milling for 25 h. The effect of rapid quenching speed on the phase composition, microstructure, and microwave electromagnetic properties of α-Fe/Nd2Fe14B nanocomposites have been investigated. Results show that the microwave complex permeability increases and the resonance frequencies (fr) of as-spun Nd6Fe91B3 alloys shifts to lower values with the increase of quenching speed, due to the decrease of Nd2Fe14B with the large anisotropy field (HA). The real part of complex permeability of Nd6Fe91B3 alloy reaches the maximum μmax′=7.88 at 1.55 GHz and imaginary part of permeability reach the maximum at 4.17 GHz μmax″=4.66. Furthermore, the α-Fe/Nd2Fe14B nanocomposites with low Re content shows an excellent microwave permittivity, and its resonance appears at about 2 GHz. Therefore, the α-Fe/Nd2Fe14B nanocomposites are beneficial to be applied to electromagnetic wave absorber in GHz, due to the cooperation effect of magnetic loss and dielectric loss.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第2期292-296,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(10804079)
关键词 快淬 纳米复相 微结构 微波电磁 ND2FE14B rapid quenching nanocomposites microstructure microwave electromagnetic Nd2Fe14B
  • 相关文献

参考文献11

  • 1Ma Lixin, Wang Guiqin, Liu Lidong et al. J Alloy Compd[J], 2010, 505:374.
  • 2Yan Longgang, Wang Jianbo, Ye Yunzhe et al. J Alloy Compd[J], 2009, 487:708.
  • 3Liu Junhu, Ma Tianyu, Tong Hui et al. J Magn Magn Mater[J], 2010, 322:940.
  • 4Ni S B, Wang X H, Zhou Get al. JAlloy Compd[J], 2010, 489: 252.
  • 5Wei X J, Jiang J T, Zhen Let al. MaterLett[J], 2010, 64:57.
  • 6Yang Y, Xu C L, Xia Y X et al. JAlloy Compd[J], 2010, 493: 549.
  • 7Lian Lixian, Liu Ying , Deng Longjiang. Rare Metal Materials and Engineering[J], 2007, 36(4): 717.
  • 8Lian Lixian, Deng L J, Han M. JApplPhy[J], 2007, 101:520.
  • 9Lian L X, Deng L J, Han Met al. JAlloy Compd[J], 2007, 441: 301.
  • 10Gerber R, Wright C D, Asti G. Applied Magnetism[M]. Dordrecht: Kluwer Academic Publisher, 1992.

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部