期刊文献+

改进的反向蛙跳算法求解函数优化问题 被引量:9

Improved opposition-based shuffled frog leaping algorithm for function optimization problems
下载PDF
导出
摘要 针对混洗蛙跳算法在求解连续函数优化问题中出现的收敛速度慢、求解精度低的缺点,提出了一种基于反向学习策略的改进算法,在种群初始化和进化过程中分别加入反向操作,产生更靠近优质解的种群,从而提高了算法的全局寻优能力,促进了算法收敛。实验仿真表明,新算法在寻优效率、计算精度等方面均优于原算法。 Classical shuffled frog leaping algorithm is slow in convergence, and has a low convergent precision to address con- tinuous function optimization problems. To overcome such shortages, this paper presented an improved shuffled frog leaping al- gorithm which combined the OBL strategy. The proposed approach employed OBL for population initialization and generation jumping to produce populations closer to high-quality solutions. The experiments carded on classic benchmark functions show that it performs significantly better both in terms of convergence speed and solution precision.
出处 《计算机应用研究》 CSCD 北大核心 2013年第3期760-763,共4页 Application Research of Computers
基金 福建省教育厅科技研究项目(JB09113) 福建农林大学青年教师科研基金资助项目(2010018)
关键词 混洗蛙跳算法 反向学习 函数优化 shuffled frog leaping algorithm(SFLA) opposition-based learning(OBL) function optimization
  • 相关文献

参考文献19

  • 1MUZAFFAR M E, KEVIN E L. Optimization of water distribution network design using the shuffled frog leaping algorithm[ J]. Journal of Water Resources Planning and Management,2003,129 (3) : 210-225.
  • 2韩毅,蔡建湖,周根贵,李延来,林华珍,唐加福.随机蛙跳算法的研究进展[J].计算机科学,2010,37(7):16-19. 被引量:22
  • 3ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Enginee- r ng nlormat cs,2005,19 ( 1 ) :43- 53.
  • 4李英海,周建中,杨俊杰,刘力.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21. 被引量:80
  • 5ZHEN Zi-yang, WANG Zhi-sheng, GU Zhou, et al. A novel memetic algorithm for global optimization based on PSO and SFLA[ C ]//Proc of the 2nd International Conference on Advances Computation and In- telligence. Berlin : Springer-Verlag, 2007 : 127 - 136.
  • 6BHADURI A. A clonally selection based shuffled frog leaping algo- rithm[ C] //Proc of IEEE International Advance Computing Confer- enee. 2009 : 125-130.
  • 7赵鹏军,刘三阳.求解复杂函数优化问题的混合蛙跳算法[J].计算机应用研究,2009,26(7):2435-2437. 被引量:71
  • 8骆剑平,陈泯融.混合蛙跳算法及其改进算法的运动轨迹及收敛性分析[J].信号处理,2010,26(9):1428-1433. 被引量:14
  • 9何兵,车林仙,刘初升.一种蛙跳和差分进化混合算法[J].计算机工程与应用,2011,47(18):4-8. 被引量:13
  • 10TIZHOOSH H R. Opposition-based learning: a new scheme for ma- chine intelligence[ C ]//Proc of International Conference on Computa- tional Intelligence for Modelling, Control and Automation. Washing- ton DC : IEEE Computer Society,2005:695- 701.

二级参考文献71

  • 1Taher NIKNAM,Ehsan AZAD FARSANI.A hybrid evolutionary algorithm for distribution feeder reconfiguration[J].Science China(Technological Sciences),2010,53(4):950-959. 被引量:10
  • 2杨俊杰,周建中,喻菁,吴玮.基于混沌搜索的粒子群优化算法[J].计算机工程与应用,2005,41(16):69-71. 被引量:46
  • 3谭皓,沈春林,李锦.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术,2005,27(8):1471-1474. 被引量:13
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics, 2005,19(1 ):43-53.
  • 6EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management, 2003,129 ( 3 ) : 210-225.
  • 7LIONG S Y, ATIQUZZAMAN M. Optimal design of water distribution network using shuffled complex evolution [ J ]. The Institution of Engineers, 2004,44( 1 ) :93-107.
  • 8EUSUFF M M. Water resources decision making using meta-heuristic optimization methods[ D ]. Tucson: University of Arizona, 2004.
  • 9ELBEHAIRY H, ELBELTAGI E, HEGAZY T, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [J ]. Computer-Aided Civil and Infrastructure Engineering, 2006,21 (8) :561-572.
  • 10WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67-82.

共引文献168

同被引文献120

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部