期刊文献+

条件随机场模型的场景描述 被引量:3

Scene description based on the conditional random fields model
原文传递
导出
摘要 提出一种基于条件随机场模型的场景描述方法,条件随机场模型直接对描述目标的后验概率建模,不但能融合多类特征,还具有联系上下文信息的能力,这使得CRF模型在场景描述中能获得更准确的描述结果。将图像分成m×n大小的矩形块,通过多类特征提取,分别提取图像中每一矩形块的颜色特征、纹理特征、位置特征,通过K-means算法对特征进行聚类,并按照矩形块的位置组成特征向量,用CRF模型对特征向量建模,通过训练获取模型的参数估计,最终利用MPM算法进行模型推断,获取场景描述。实验结果表明本文方法能较准确地进行场景描述。 A method of scene description based on the conditional random field model is presented in this paper. The conditional random fields models the posterior directly, so that it can exploit several types of features, and has the ability to contact context information. Therefore, the CRF model in the scene description can get a more accurate description of the results. In this paper, the images are divided into rectangular blocks with a size of m ~ n. The color feature, texture fea ture, and location feature for each rectangular block are extracted through multiclass features extraction. These features are clustered by the Kmeans algorithm, and then the feature vector is composed of the features clustered by Kmeans in accordance with the position of the rectangle. The feature vector is modeled by the CRF model. The model parameters are estimated through training. We use the MPM algorithm for model inference to get the scene description. The experimental results show a higher accuraly of the method presented in this paper for scene description.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第3期271-276,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(61071173)
关键词 场景描述 特征提取 K—means 条件随机场 scene description feature extraction K-means conditional random fields
  • 相关文献

参考文献13

  • 1Elfiky N M, Khan F S, Van de Weijer J, et al. Discriminative compact pyramids for object and scene recognition [ J ]. Pattern Recognition, 2012, 45 (4) : 1627-1636.
  • 2Bianco S, Ciocca G, Cusano C, et al. Improving color constancy using indoor-outdoor image classification [ J ]. IEEE Transactions on Image Processing, 2008, 17(12) : 2381-2392.
  • 3Kim W, Park J, Kim C. A novel method for efficient indoor-outdoor image classification [ J ]. Journal of Signal Processing Sys- tems for Signal Image and Video Technology, 2010, 61 ( 3 ) : 251-258.
  • 4Reddy I S, Shevade S,Murty M N. A fast quasi-Newton method for semi-supervised SVM [ J]. Pattern Recognition, 2011, 44( 10-11 ) : 2305-2313.
  • 5Bhatt M R, Desai U B. Robust image-restoration algorithm using markov random-field model [ J ]. Cvgip-Graphical Models and Image Processing, 1994, 56 ( 1 ) : 61-74.
  • 6Zhong P, Wang R S. Learning conditional random fields for cla- ssification of hyperspectral images [ J ]. IEEE Transactions on Image Processing, 2010, 19 ( 7 ) : 1890-1907.
  • 7Shin D K, Kim H S, chung T Y, et al. Image retrieval using VQ-based local Gabor feature [ J ]. Electronics Letters, 2002, 38(11) : 505-507.
  • 8Zhong P, Liu F,Wang R S. Learning sparse conditional random fields to select features for land development classification [ J ]. International Journal of Remote Sensing, 2011, 32 ( 15 ) : 4203-4219.
  • 9Vinh L T, Lee S, Le H X, et al. Semi-Markov conditional ran- dom fields for accelerometer-based activity recognition [ J ]. Applied Intelligence, 2011, 35 (2) : 226-241.
  • 10Yang B, Huang C,Nevatia R. Segmentation of objects in a detec- tion window by Nonparametric Inhomogeneous CRFs [ J ]. Com- puter Vision and Image Understanding, 2011, 115 ( 11 ) : 1473- 1482.

同被引文献23

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2潘晨,闫相国,郑崇勋,杨勇.用于彩色图像分割的支持向量机的快速训练[J].模式识别与人工智能,2005,18(4):392-398. 被引量:5
  • 3杨治明,王晓蓉,彭军,陈应祖.BP人工神经网络在图像分割中的应用[J].计算机科学,2007,34(3):234-236. 被引量:46
  • 4田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. 被引量:43
  • 5Sridevi M , Mala C. A survey on monochrome image segmentation methods [ J]. Procedia Technology, 2012,6:548 - 555.
  • 6Jain K,Murtry N. Data clustering: a review[ J]. ACM Computing Surveys, 1999,31 (3) :264 - 323.
  • 7Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision,2004,59(2) :167 -181.
  • 8Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C] //Proceedings of the 18th International Conference on Machine Learning,2001 :282 -289.
  • 9Kim D,Oh S M, Rehg J M. Traversability classification for UGV navigation: a comparison of patch and superpixel representations[C]// IEEE International Conference on Intelligent Robots and Systems, 2007 :3166 -3173.
  • 10Frey B J, MacKay D J C. A revolution: Belief propagation in graphs with cycles[ J]. Advances in Neural Information ProcessingSystems, 1997,10:479 -485.

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部