期刊文献+

基于曲率分析的三次Bezier曲线采样方法的研究 被引量:2

Sampling method based on curvature analysis of cubic Bezier curve
下载PDF
导出
摘要 针对三维建模过程中数据量大的缺点,提出一种简单的基于曲率分析的三次Bezier曲线采样方法。该方法采用每个分段的三次Bezier曲线的特征点和该段曲率半径的极小值作为采样密度的判断标准,曲线采样主要分为多层轮廓和单一轮廓两种情况,对于多层轮廓,采样密度涉及到的因素有曲线特征点,曲率半径极小值,轮廓之间的间距,曲线的长度。而对于单一轮廓,采样密度涉及到的因素有曲线特征点,曲率半径极小值,曲线的长度。通过以上因素,计算出采样点的数目。实验结果证明,提出的方法可行有效,可用于三维建模的数据点采样。 In order to eliminate the shortcomings of large volumes data in three-dimensional modeling process, a fast and effi- cient sampling method based on curvature analysis of cubic Bezier curve is presented. In the method, the characteristic points and curvature maximum value of cubic Bezier curve are used as the reference standard of the sampling interval and density, the sampling of curve includes contours and single contour. For contours, the correlative factors are characteristic points, curvature minimum value of cubic Bezier curve, the interval between contours, and the length of curve. And for the single contours, the correlative factors are characteristic points, curvature minimum value of cubic Bezier curve and the length of curve. According to these factors, it calculates the number of sampling data. Some typical experimental results show that this method is feasible and effective for the sampling of 3D modeling.
出处 《计算机工程与应用》 CSCD 2013年第5期160-162,253,共4页 Computer Engineering and Applications
基金 教育部留学回国人员科研启动费(No.K314020901) 中央高校基本科研业务费专项资金资助(No.Z109021004)
关键词 三次BEZIER曲线 特征点 曲率分析 采样 cubic Bezier curve characteristic points curvature analysis sampling
  • 相关文献

参考文献8

  • 1Amenta N,Bern M.Surface reconstruction by Voronoi filter- ing[C]//ACM Symposium on Computational Geometry.New York: ACM, 1998 : 39-48.
  • 2Amenta N, Bern M, Kamvysselis M.A new Voronoi-based surface reconstruction algorithm[C]//Proceedings of ACM SIGGRAPH.New York: ACM, 1998 : 415-421.
  • 3Gopi M,Krishnan S,Silva C T.Surface reconstruction based on lower dimensional localized Delaunay triangulation[J]. Computer Graphics Forum,2000, 19(3) :467-478.
  • 4Piegl L, Tiller W.Surface approximation to scanned data[J]. The Visual Computer,2000, 16(7) :386-395.
  • 5Piegl L, Tiller W.The NURBS book[M].2nd ed.New York: Springer, 1997 : 8-15.
  • 6Zhang Zhiyi, Zhang Xian, Tian Sulei, et al.Extract shape characteristic points from cubic B-spline curve by segmented cubic Bezier curve[C]//The International Conference on Multi- media Technology.Ningbo, China: [s.n.], 2010,2 : 768-773.
  • 7Zhang Zhiyi, Chert Min,Zhang Xian, et al.Analysis of inflec- tion points for planar cubic Bezier curve[C]//Intemational Conference on Computational Intelligence and Software En- gineering.Wuhan: [s.n.], 2009: 456-461.
  • 8Farin G.Curves and surfaces for computer aided geometric design-a practical guide[M].4th ed.[S.1.]: Academic Press, 1997:53-59.

同被引文献23

  • 1黄童心,王文珂,张慧,宋征轩.基于场分布的平面散乱点集B样条曲线重建算法[J].工程图学学报,2010,31(2):73-83. 被引量:1
  • 2谭昌柏,周来水,安鲁陵,彭雨哟.逆向工程中基于密集数据点的轮廓线重建技术[J].华南理工大学学报(自然科学版),2005,33(5):32-37. 被引量:10
  • 3何俊,戴浩,谢永强,刘宝生.一种改进的快速Delaunay三角剖分算法[J].系统仿真学报,2006,18(11):3055-3057. 被引量:20
  • 4Deepak C. Srivastava, VipulRastogi, RajitGhosh. A rapid B6zier curve method for shape analysis and point repre- sentation of asymmetric folds[J]. Journal of Structural Geology, 2010 (32):685-692.
  • 5M.Sarfraz , A.Masood. Capturing outlines of planar im- ages using Bezier cubics[J]. Computers& Graphics, 2007 (31):719-729.
  • 6AsifMasood, Muhammad Sarfraz. Capturing outlines of 2D objects with B6zier cubic approximation[J]. Image and Vision Computing, 2009 (27):704-712.
  • 7Akkouche S, Galin E. Adaptive implicit surface polygonization using marching triangles [J]. Computer Graphics Forum, 2001, 20(2): 67-80.
  • 8Amenta N, Bern M, Eppstein D. The crust and the p-skeleton: combinatorial curve reconstruction [J]. Graphical Models and Image Processing, 1998, 60(2): 125-135.
  • 9Dey T K, Mehlhorn K, Ramos E A. Curve reconstruction: connecting dots with good reason [C]//ACM. SOCG. Hong Kong, China, 2000: 229-244.
  • 10Althaus E, Mehlhorn K. TSP-based curve reconstruction in polynomial time [C]//ACM/SIAM. SODA. San Francisco, CA, USA, 2000: 686-695.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部