期刊文献+

基于分段间隙函数的螺旋锥齿轮时变啮合参数分析 被引量:6

Time-varying meshing parameters analysis for spiral bevel gear based on sub-clearance function
下载PDF
导出
摘要 刚度和阻尼等啮合参数是螺旋锥齿轮非线性振动的主要影响因素。考虑啮合刚度和啮合阻尼的时变性,采用二次谐波形式展开,建立了螺旋锥齿轮副振动平衡方程。基于不同啮合状态下间隙函数的变化,研究了啮合刚度及啮合阻尼在三种啮合状态下对螺旋锥齿轮副啮合特性的影响规律。采用Matlab进行分析,给出了平均啮合阻尼、谐波啮合阻尼、主谐波啮合刚度和次谐波啮合刚度对啮合点振动位移的影响曲线。结果表明增大平均啮合阻尼和降低主谐波啮合刚度会降低振动位移峰值,提高齿轮传动平稳性。 Meshing parameters including stiffness and damping are key factors of nonlinear vibration of spiral bevel gears. Considering the time-varying characteristics of meshing stiffness and meshing damping, adopting a second-order Fourier series, vibration equation of a pair of spiral bevel gears was established. Based on the variation of clearance function under different meshing states, the effects of meshing stiffness and meshing damping on meshing features of a pair of spiral bevel gears under three meshing states were studied. Using Matlab, the vibration displacement curves of the meshing point were given when mean meshing damping, harmonic meshing damping, major harmonic meshing stiffness and sub-harmonic meshing stiffness were considered. The results showed that increasing mean meshing damping and decreasing major harmonic meshing stiffness can drop vibration displacement peaks and improve transmission stability.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第4期153-157,162,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51075006) 国家科技重大专项(2010ZX04001-041) 北京市科委项目(Z111104054111)
关键词 螺旋锥齿轮 时变啮合阻尼 时变啮合刚度 间隙函数 振动位移曲线 spiral bevel gear time-varying meshing damping time-varying meshing stiffness clearance function vibration displacement curves
  • 相关文献

参考文献15

  • 1Wang J, Lim T C, Li M F. Dynamics of a hypoid gear pair considering the effects of time-varying meshing parameters and backlash nonlinearity [ J ]. Journal of Sound and Vibration, 2007, 308: 302- 329.
  • 2Wang J, Lim T C. Effect of tooth meshing stiffness asymmetric nonlinearity for drive and coast sides on hypoid gear dynamics [ J ]. Journal of Sound and Vibration, 2009, 319:885-903.
  • 3Ma Q L, Kahraman A. Subharmonic resonances of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness [ J ]. Journal of Sound and Vibration, 2006, 294: 624- 636.
  • 4Kahraman A, Blankenship G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters [ J ]. ASME Journal of Applied Mechanics, 1997, 64 : 217 - 226.
  • 5Al-shyyab A, Kahraman A. Non-linear dynamic analysis of a multi-meshing gear train using multi-term harmonic balance method: period-one motions [ J ]. Journal of Sound and Vibration, 2005, 284:151 - 172.
  • 6Litak G, Friswell M I. Vibration in gear systems [ J]. Chaos, Solitons and Fractals, 2003, 16:795 - 800.
  • 7李润方,王建军.齿轮系统动力学一振动、冲击和噪声[M].北京:科学出版社,1997.
  • 8唐进元,陈思雨.阻尼和刚度项含时变参数的强非线性振动系统周期解研究[J].振动与冲击,2007,26(10):96-100. 被引量:7
  • 9陈思雨,唐进元,谢耀东.齿轮传动系统的非线性冲击动力学行为分析[J].振动与冲击,2009,28(4):70-75. 被引量:26
  • 10王建平,王玉新.运用多尺度法对齿轮系统组合共振特性的分析[J].西安理工大学学报,2005,21(1):5-10. 被引量:6

二级参考文献68

共引文献55

同被引文献61

  • 1杨绍普,申永军,刘献栋.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击,2005,24(3):40-42. 被引量:26
  • 2邓效忠,杨建军,魏冰阳,方宗德.超声激励下弧齿锥齿轮研齿系统动态研磨力分析[J].中国机械工程,2007,18(19):2359-2361. 被引量:2
  • 3Ozguven H N, Houser D R. Mathematical models used in gear dynamics-a review[ J]. Journal of Sound and Vibration, 1988, 121(3) : 383 -411.
  • 4He S, Cho S, Singh R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations [ J ]. Journal of Sound and Vibration, 2008, 309(3/5) : 843 -851.
  • 5He S, Gunda R, Singh R. Effect of sliding friction in gear dynamics of spur gear pair with realistic time-varying stiffness [ J ]. Journal of Sound and Vibration, 2007, 301 : 927 - 949.
  • 6Liu G, Parker R G. Impact of tooth friction and its bending effect on gear dynamics [ J ]. Journal of Sound and Vibration, 2009, 320(4/5) :1039 - 1063.
  • 7Velex P, Cahouet V. Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics [ J ]. Journal of Mechanical Design, 2000, 122(4) :515 -522.
  • 8Vaishya M, Singh R. Strategies for modeling friction in gear dynamics [ J ]. Journal of Mechanical Design, 2003, 125(2) : 383 -393.
  • 9Vaishya M, Singh R. Analysis of periodically varying gear mesh systems with coulomb friction using floquet theory [ J ]. Journal of Sound and Vibration, 2001, 243 (3) : 525 - 545.
  • 10Feng Z H, Wang S L, Lim T C, et al. Enhanced friction model for high-speed right-angle gear dynamics [ J ]. Journal of Mechanical Science and Technology, 2011,25 ( 11 ) : 2741.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部