期刊文献+

考虑非局部效应的纳米梁非线性振动 被引量:9

Non-local effect on non-linear vibration characteristics of a nano-beam
下载PDF
导出
摘要 以弹性理论为基础,建立考虑非局部效应和轴向非线性伸长的两端固支纳米梁物理模型,推导其动力学方程,计算得到考虑非局部效应和轴向非线性纳米梁的固有频率,研究考虑非局部效应的纳米梁主谐波共振响应。数值结果表明,非局部效应对两端固支纳米梁固有频率和幅频关系均有影响。 Non-linear vibrational characteristics of a nano-beam were studied taking the non-local effect into account. The physical model was built based on the continue body theory and the effect of axial elongation for the nano-beam. The dynamic equations were derived based on the non-local effect. The natural frequencies were obtained and the principal resonance was studied considering non-local effect and axial nonlinear elongation. The numerical results showed that the non-local effect has effects on both the natural frequencies and the relationship between frequency and amplitude.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第4期158-162,共5页 Journal of Vibration and Shock
基金 长江学者和创新团队发展计划资助(IRT0968) 博士后基金(2012M521082)
关键词 非局部效应 纳米梁 非线性模型 多尺度 non-local elastic effect nano-beam non-linear model multi-scale
  • 相关文献

参考文献13

  • 1Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [ J ]. Journal of Applied Physics, 1983, 54 (9) : 4703 -4710.
  • 2杨晓东,林志华.利用多尺度方法分析基于非局部效应纳米梁的非线性振动[J].中国科学:技术科学,2010,40(2):152-156. 被引量:9
  • 3Wang C M, Kitipomchai S, Lira C W. Beam bending solutions based on nonlocal Timoshenko beam theory [ J ]. Journal of Engineering Mechanics, 134 ( 6 ), 2008: 475 481.
  • 4Ke L L, Xiang Y, Yang J. Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory [ J ]. Computational Materials Science ,2009,47:409 - 417.
  • 5Yang J, Ke L L, Kitipomchai S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory [J]. Physica E ,2010,42:1727 - 1735.
  • 6Pradhan S C, Murmu T. Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever[J]. Physica E,2010,42:1944 -1949.
  • 7Wang C M, Zhang Y Y, Kitipornchai S. Vibration of initially stressed micro and nano-beams [ J ]. International Journal of Structural Stability and Dynamics, 2007,7 (4) : 555 -570.
  • 8宋震煜,于虹.纳米梁非线性振动的动力学分析[J].微纳电子技术,2006,43(3):145-149. 被引量:6
  • 9朱年勇,于虹,黄庆安.纳机械谐振器的非线性特性分析[J].电子器件,2005,28(1):35-37. 被引量:3
  • 10夏晓媛,李昕欣,王跃林,李铁,杨衡,焦继伟.超薄硅纳米谐振梁的制作及谐振特性的测量[J].纳米技术与精密工程,2008,6(1):1-4. 被引量:3

二级参考文献52

  • 1胡小唐,李源,饶志军,胡春光,傅星.纳机电系统[J].纳米技术与精密工程,2004,2(1):1-7. 被引量:10
  • 2王平,黄庆安,于虹.纳机电系统阻尼及噪声研究进展[J].电子器件,2004,27(3):527-532. 被引量:4
  • 3宋达,刘文平,李铁,李昕欣,王跃林.NEMS谐振器的研究与分析[J].电子器件,2005,28(1):30-34. 被引量:4
  • 4朱年勇,于虹,黄庆安.纳机械谐振器的非线性特性分析[J].电子器件,2005,28(1):35-37. 被引量:3
  • 5Eringen C. Nonlocal Polar Field Models. New York: Academic Press, 1976.
  • 6Eringen C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J App1 Phys, 1983, 54(9): 4703--4710.
  • 7Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology. Int J Eng Sci, 2003, 41(3): 305-- 312.
  • 8Sudak L J. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys, 2003, 94(11): 7281-- 7287.
  • 9Zhang Y Q, Liu G R, Wang J S. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B, 2004, 70(20): 205430.
  • 10Wang Y, Ru C Q, Mioduchowski A. Free vibration of multiwall carbon nanotubes. J Appl Phys, 2005, 97(11): 114323.1--114323.11.

共引文献24

同被引文献30

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部