期刊文献+

拉压刚度不同桁架的动力参变量变分原理和保辛算法 被引量:5

Dynamic parametric variational principle and symplectic algorithm for trusses with different tensional and compressional stiffnesses
下载PDF
导出
摘要 对于一些展开结构,为达到其设计性能,必须采用特殊的索、膜结构,这些索、膜部件表现出不同的拉压性质。具有拉、压不同性质的材料或结构的力学分析,体现出较强的非线性特征,需要针对这类问题发展有效的求解算法。建立了由拉压刚度不同杆单元组成的桁架结构的动力学参变量变分原理,将拉压刚度不同桁架问题的非线性动力分析转换为线性互补问题求解。结合时间有限元方法构造了求解此问题的保辛数值积分方法,此方法不需要迭代和刚度矩阵更新,避免了迭代求解方法的收敛问题,计算过程稳定、高效。 For deployable structures, some special structures, such as, cables and membranes are used to achieve their design performance. These cable and membrane components show different tensile and compressive properties. The differences in tension and compression bring strong nonlinear behaviors and effective numerical methods are needed. Dynamic parametric variational principle for trusses with different stiffnesses in tension and compression was established and the nonlinear dynamic analysis of these trusses could be transformed into a complementary problem. Based on the time finite element method, a symplectic method for solving this problem was established. It was shown that the proposed numerical method is stable and efficient, and it does not need iterations and update of stiffness matrix.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第4期179-184,共6页 Journal of Vibration and Shock
基金 自然科学基金(11272076,11232003) 973项目(2011CB711105)
关键词 拉压刚度不同 非线性 参变量 different stiffnesses in tension and compression nonlinear parametric variational principle symplectic
  • 相关文献

参考文献18

  • 1Timoshenko S. Strength of Materials, part II: Advanced theory and problems [ M ]. 2nd ed. Princeton: Van Nostrand, 1941.
  • 2Ambartsumyan S A. The Axisymmetric problem of circular cylindrical shell made of materials with different stiffness in tension and compression [ J ]. Akademii Nauk SSSR, Mekhanika, 1965 (4) : 77 - 85.
  • 3AmbartsumyanSA著,张允真译.不同模量弹性理论[M].北京:中国铁道出版社,1986.
  • 4Cornel S, Martin C, Robert E S. Linear dynamics of tensegrity structures [ J]. Engineering Structures, 2002, 24 : 671 - 685.
  • 5Be1 H A N, Smith I F C. Dynamic behavior and vibration control of a tensegrity structure [ J ]. International Journal of Solids and Structures, 2010, 47:1285 -1296.
  • 6Mirats T, Hernandez J. Tensegrity Frameworks: Dynamic analysis review and open problems [ J ]. Mechanism and Machine Theory, 2009, 44 : 1 - 18.
  • 7张允真,王志锋.不同拉、压模量弹性力学问题的有限元法[J].计算结构力学及其应用,1989,6(1):236-246. 被引量:44
  • 8杨海天,邬瑞锋,杨克俭,张允真.初应力法解拉压双弹性模量问题[J].大连理工大学学报,1992,32(1):35-39. 被引量:17
  • 9刘相斌,张允真.拉压不同模量有限元法剪切弹性模量及加速收敛[J].大连理工大学学报,1994,34(6):641-645.
  • 10He X T, Zheng Z L, Sun J Y. Convergence analysis of a finite element method based on different moduli in tension and compression [ J . International Journal of Solids and Structures, 2009, 46: 3734- 3740.

二级参考文献28

共引文献73

同被引文献76

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部