期刊文献+

基于LS-SVM的信号自适应补偿算法及FPGA实现

Signal Adaptive Compensation Algorithm Based on LV-SVM and Field Programmable Gate Array(FPGA) Implementation
下载PDF
导出
摘要 针对传感器信号采集系统中出现的误差,引入了基于最小二乘支持向量机(LS-SVM)的信号自适应补偿方法,以保证采集信号的准确度。介绍了常用的信号补偿方法,在此基础上提出了基于LS-SVM的补偿算法,并利用MATLAB和QuartusII软件进行仿真。结果表明该方案正确有效。 To solve errors in the sensor signal collection system, the signal adaptive compensation method based on the least-square support vector machine (LS-SVM) is used to ensure the accura- cy of the signal collection. Firstly, compensation methods for commonly used signals are intro- duced. Then, a compensation method is given based on LS-SVM. Finally, the simulation is per- formed by using QuartusII and MATLAB. Simulation results show that the scheme is correct and effective.
出处 《指挥信息系统与技术》 2013年第1期48-51,共4页 Command Information System and Technology
关键词 最小二乘支持向量机 传感器信号采集 自适应补偿 可编程门阵列 least-square support vector machine (LS-SVM) sensor signal collection adaptivecompensation field programmable gate array(FPGA)
  • 相关文献

参考文献6

二级参考文献28

  • 1冯学军,赵琴.径向基神经网络在股市预测中的应用[J].安庆师范学院学报(自然科学版),2005,11(1):29-31. 被引量:10
  • 2周辉仁,郑丕谔,赵春秀.基于遗传算法的LS-SVM参数优选及其在经济预测中的应用[J].计算机应用,2007,27(6):1418-1419. 被引量:16
  • 3CORTES C, VAPNIK V. Support-vector network[J]. Machine Learning, 1995,20(3) :273-297.
  • 4Suykens JAK,Vandewalle J. Least square support vector machines classifiers[J]. Neural Processing Letters(S1370-4621), 1999,9 (3) :293-300.
  • 5李春茂,肖建,张玥.基于LS-SVM的网络化控制系统自适应预测控制[J].系统仿真学报,2007,19(15):3494-3498. 被引量:8
  • 6Vapnik V N. The nature of statistical learning theory [M].Berlin: Springer-Verlag, 1982.
  • 7Perfetti R, Ricci E. Analog neural network for support vector machine learning [J]. IEEE Trans on Neural Network, 2006, 17(4) : 1085-1091.
  • 8Alzate C, Suykens J A K. Kernel component analysis using an epsilon-insensitive robust loss function [J]. IEEE Trans on Neural Network, 2008, 19(9): 1583- 1598.
  • 9Zhao Y P, Sun J G. Recursive reduced least squares support vector regression [J]. Pattern Recognition, 2009, 42(5): 837-842.
  • 10Chang J H, Jo Q H, Kim D K, etal. Global soft decision employing support vector machine for speech enhancement[J].IEEE Signal Processing Letters, 2009, 16(1): 57-60.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部