期刊文献+

锂离子电池正极材料LiMnPO4的电子结构 被引量:4

Electronic Structure of LiMnPO_4 Positive-Electrode Material for Lithium-Ion Battery
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理计算方法,计算了锂离子电池LiMnPO4正极材料的电子结构。计算结果表明:当Li+嵌入体系后,O和P的原子布居变化较小,电子向金属原子的转移明显得到加强。Li+和O2-有弱相互作用,当Li+离子脱出以后,氧原子所得到的电子数减小,导致布居减小。锂是以离子形式存在的于LiMnPO4正极材料中。在LiMnPO4和MnPO4体系中,Mn原子具有磁性,其磁矩分别为4.78μB和3.84μB,其余原子磁性近似为0。氧为负离子,带负电荷,而P和Mn则为正离子。O2p与P3s、P3p轨道发生有效重叠,并形成共价键,Mn3d和O2p之间能够有效地发生重叠并形成共价键。在放电过程中有电子从外电路进入正极,大部分电子所带电荷分布在Mn原子上。 The electronic structure of LiMnPO4 positive electrode material for lithium ion battery was calculated by the first principles method based on the density functional theory (DFT). The calculated results demonstrate that the change for the atomic populations of O and P is slight, and the transfer of electrons to the metal atoms is obviously strengthened after the intercalation of Li+ ions. There is a weak interaction between Li+ ions and O2- ions, and the obtained electric charge of oxygen atom reduces, and then the atomic population decreases after deintercalation of Li+ ions. As a result, lithium element exists in the LiMnPO4 positive electrode material mainly in form of ions. In the LiMnPO4 and MnPO4, Mn atoms have magnetic properties, and the magnetic moment values are 4.78μB and 3.84μB, respectively. However, the magnetic properties of the rest atoms approximate to zero. For oxygen anion, with negative charge, and P and Mn is positive ion. There is an effective overlap between O2p, P3s, P3p orbits and Mn3d, O2p orbits, and then forms the covalent bonds. During the discharge, the electrons enter the positive electrode from external circuit, and most of the electrons mainly fill in the Mn atoms.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第3期523-527,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51274002,50902001) 中国博士后科学基金(No.2012M520749) 浙江省博士后科研择优资助项目(No.Bsh1201013) 安徽工业大学创新团队(No.TD201202)资助项目
关键词 锂离子电池 正极材料 LIMNPO4 电子结构 密度泛函 lithium-ion battery positive-electrode material LiMnPO4 electronic structure density functional theory
  • 相关文献

参考文献16

  • 1CHANG Xiao-Yan(常晓燕), WANG Zhi-Xing(王志兴), LI Xin-Hai(李新海), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2004,20:1249-1252.
  • 2Doan T N L, Taniguchi I. J. Power Sources, 2011,196:1399-1408.
  • 3WANG Zhi-Xing(王志兴), LI Xiang-Qun(李向群), CHANG Xiao-Yan(常晓燕), et al. Chinese Journal of Nonferrous Metals (Zhongguo Youse Jinshu Xuebao), 2008,18:660-665.
  • 4NIE Ping(聂平), SHEN Lai-Fa(申来法), CHEN Lin(陈琳), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2011, 27:2123-2128.
  • 5Ceder G. MRS Bull., 2010,35:693-701.
  • 6Wang L, Zhou F, Ceder G. Electrochem. Solid-State Lett., 2008,11:A94-A96.
  • 7Ong S P, Jain A, Hautier G, et al. Electrochem. Commun., 2010,12:427-430.
  • 8Nie Z X, Ouyang C Y, Chen J Z, et al. Solid State Commun., 2010:150:40-44.
  • 9Gwon H, Seo D H, Kim S W, et al. Adv. Funct. Mater., 2009,19:3285-3292.
  • 10Payne M C, Teter M P, Allan D C, et al. Rev. Mod. Phys., 1992,64:1045-1097.

同被引文献70

  • 1倪江锋,苏光耀,周恒辉,陈继涛.锂离子电池正极材料LiMPO_4的研究进展[J].化学进展,2004,16(4):554-560. 被引量:46
  • 2伊廷锋,胡信国,霍慧彬,高昆.5V锂离子电池尖晶石正极材料LiM_(0.5)Mn_(1.5)O_4的研究评述[J].稀有金属材料与工程,2006,35(9):1350-1353. 被引量:26
  • 3Notter D A, Gauch M, Widmer R et al. Environmental Science Technology [J], 2010, 44(17): 6550.
  • 4Zhang H, Cao G, Wang Z et al. Electrochimica Acta[J], 2010, 55(8): 2873.
  • 5Guerfi A, Charest P, Dontigny Met al. J Power Sources[J], 2011, 196(13): 5667.
  • 6Marom R, Amalraj S F, Leifer Net aL J Materials Chem[J], 2011, 21:9938.
  • 7LiXinyang(李昕洋),ZhangPeixin(张培新),HuangXiaoqian(黄小倩)et al.稀有金属材料与工程[J],2008,37(s2):591.
  • 8YangGai(杨改),JiangChangyin(姜长印),CaiFeipeng(蔡飞鹏)et al.稀有金属材料与工程[J],2011,40(2):457.
  • 9Li G H, Azuma H, Tohda M. Electroehem Solid-State Lett[J], 2002, 5(6): 135.
  • 10Yamada A, Yoshihiro K, Li K Y. Electrochem Solid-State Lett[J], 2001, 148(7): 745.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部