期刊文献+

基于匹配追踪算法的超声导波管道轴向缺陷大小定量分析 被引量:15

Evaluation of Pipe Axial Defeat through the Use of Ultrasonic Guided Wave and Matching Pursuit
下载PDF
导出
摘要 超声导波技术因其单端激励、传播距离远,100%横截面检测等特点在长距离大范围结构的无损检测和健康监测中显示出良好的应用前景,但受制于理论及仪器技术目前基本只用于缺陷筛查,超声导波定量化检测技术尚未得到广泛研究和应用。针对导波检测中缺陷大小定量分析问题,提出一种基于匹配追踪算法的管道轴向缺陷大小定量分析方法。通过分析回波信号特性,合理选择字典分解出缺陷回波信号的两端面信号,并通过端面信号计算出轴向缺陷大小。通过有限元数值模拟以及利用MSGW磁致伸缩导波检测仪对人工刻伤的铝管进行算法验证试验,结果表明该算法的误差小于5%。 Ultrasonic guided wave technology shows a good prospect in the long distance and large-scale structure of the non-destructive testing and health monitoring, thanks to its advantages such as single-ended excitation, long propagation distance, 100% detection of cross section. Constrained by theory and instrumentation technology, ultrasonic guided wave is basically only used for defect screening, ultrasonic guided wave quantitative detection technology has not been widely studied and applied. Aiming at the quantitative analysis of defect size problem in guided wave inspection, it proposes a method based on matching pursuit for quantifying the severity of pipeline defect along axial direction. By analyzing the characteristics of the echo signal, the optimized dictionary is constructed to efficiently decompose the edge reflection components from defect reflection signal. The axial extent of defect can be then quantitatively evaluated by using obtained information. Algorithm validation experiments of finite element numerical simulation as well as detecting the artificial defects in the aluminum pipe by using MSGW magnetostrictive guided wave detector show that the algorithm of error is less than 5%.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第4期1-5,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(61271084 51275454) 中央高校基本科研业务费专项 浙江省重大科技计划(2012C01015-2)资助项目
关键词 超声导波 缺陷大小 Gabor字典 匹配追踪 Ultrasonic guided waves Defect size Gabor dictionary Matching pursuit
  • 相关文献

参考文献11

  • 1MU J, ZHANG L, ROSE J. Defect circumferential sizing by using long range ultrasonic guided wave focusing techniques in pipe[J]. Nondestructive Evaluation, 2007, 22. 239-253.
  • 2DEMMA A, CAWLEY P, LOWE M, et al. The reflection of guided waves from notches in pipes: A guide for interpreting corrosion measurements[J]. NDT & E Int., 2004, 37. 167-180.
  • 3LI Jian. On circumferential disposition of pipe defects by long-range ultrasonic guided waves[J]. Journal of Pressure Vessel Technology, 2005, 127: 530-538.
  • 4DAVIES J, CAWLEY P. The application of synthetically focused imaging techniques for high resolution guided wave pipe inspection[J]. Review of Quantitative Nondeslructive Evaluation, 2007, 26: 681-688.
  • 5邓菲,吴斌,何存富.基于时间反转的管道导波缺陷参数辨识方法[J].机械工程学报,2010,46(8):18-24. 被引量:32
  • 6DEMMA A, CAWLEY P, LOWE M. Scattering of the fundamental shear horizontal mode from steps and notches in plates[J]. J. Acoust. Soc. Am., 2003, 113 (4): 1880-1891.
  • 7DEMMA A, CAWLEY P, LOWE M. The reflection of the fundamental torsional mode from cracks and notches in pipes[J]. J. Acoust. Soe. Am., 2003, 114: 611-625.
  • 8WANG Xiaojuan, TSE P, MECHEFSKE C, et al. Experimental investigation of reflection in guided wave-based inspection for the characterization of pipeline defects[J]. NDT & E Int., 2010, 43: 365-374.
  • 9MA J, CAWLEY P. Low-frequency pulse echo reflection of the fundamental shear horizontal mode from part-thickness elliptical defects in plates[J]. J. Acoust. Soc.Am., 2010, 127: 3485-3493.
  • 10MALLAT S, ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.

二级参考文献10

  • 1DAVIES J, CAWLEY P. The application of synthetically focused imaging techniques for high resolution guided wave pipe inspection[J]. Review of Quantitative Nondestructive Evaluation, 2007, 26: 681-688.
  • 2DENG Fei, WU Bin, HE Cunfu. A time reversal defect-identifying method for guided wave inspection in pipes[J]. Journal of Pressure Vessels and Piping, 2008, 130(2): 021503.1-021503.8.
  • 3DENG Fei, HE Cunfu, WU Bin. Time reversal method for pipe inspection with guided waves[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2007, 27:113-118.
  • 4DITRI J J. Utilization of guided elastic waves for the characterization of circumferential cracks in hollow cylinders[J]. Acoustical Society of American, 1994, 96: 3 769-3 775.
  • 5LOWE M, ALLEYNE D, CAWLEY P. The mode conversion of a guided wave by a part-circumferential notch in a pipe[J]. Journal of Applied Mechanics, 1998, 65(3): 649-656.
  • 6ALLEYNE D, LOWE M, CAWLEY E The reflection of guided waves fi'om circumferential notches in pipes[J]. Journal of Applied Mechanics, 1998, 65(3): 635-641.
  • 7DEMMA A, CAWLEY P, LOWE M. The reflection of the fundamental torsional mode from cracks and notches in pipes[J]. Journal of the Acoustical Society of America, 2003, 114(2): 611-625.
  • 8ZHU Wenhao. An FEM simulation for guided elastic wave generation and reflection in hollow cylinders with corrosion defects[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2002, 124(1): 108-117.
  • 9ROSE J L, PELTS S, ZHU Wenhao. Flaw sizing potential with guided waves[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2000, 19. 927-934.
  • 10邓菲,吴斌,何存富.基于时间反转的管道导波小缺陷检测数值分析[J].北京工业大学学报,2008,34(7):673-677. 被引量:11

共引文献31

同被引文献136

引证文献15

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部