期刊文献+

一种印刷型薄膜太阳能电池p-n结调制技术 被引量:2

A p-n Junction Modulation Technique for Printed Thin Film Solar Cell
下载PDF
导出
摘要 能带值为0.5~0.85eV材料的稀缺是多结太阳能电池面临的一个主要挑战,本文使用非真空的机械化学法合成了能带值为0.83eV的Cu2SnS3化合物,使用印刷技术将其制备成吸收层薄膜,并采用superstrate太阳能电池结构(Mo/Cu2SnS3/In2S3/TiO2/FTO glass)对其光伏特性进行了研究.实验表明所制备的太阳能电池短路电流密度、开路电压、填充因子和转换效率分别为12.38mA/cm2、320mV、0.28和1.10%.此外,为更好地满足多结太阳能电池对电流匹配的需求,本文对所制备太阳能电池的Cu2SnS3/In2S3p-n结进行了分析.通过在p-n结界面植入一层薄的疏松缓冲层,使调制后的太阳能电池短路电流密度从最初的12.38mA/cm2增加到了23.15mA/cm2,相应太阳能电池转换效率从1.1%增加到了1.92%.该p-n调制技术对印刷型薄膜太阳能电池具有重要借鉴意义. The scarcity of materials with band gap value of 0. 5~0. 85 eV is one of the major challenges for the multi-junction solar cells. In this study, the compounds CueSnSa with band gap of 0.83 eV is synthesized by non-vacuum mechanochemical method, and is prepared into absorber layer by non-vacuum printing technique. The photovoltaic properties of the Cu2SnS3 are studied by employing a superstrate solar cell structure of Mo/Cu2SnS~/InzS~/TiOz/FTO glass. Experiment result indicates that the short-circuit current density, open-circuit voltage, fill factor and conversion efficiency of the fabricated solar cell are 12.38 mA/cm2, 320 mV, 0. 28% and 1.10%, respectively. Furthermore, to better meet the requirements of multi-junction solar cell on the current matching, the Cu2SnS3/In2S3 p-n junction of the fabricated solar cell is analyzed. A p-n modulation technique with a thin porous buffer layer inserted into the p-n junction interface is proposed. The results indicate that the technique can promote the short-circuit current density of the solar cell from initial 12.38 mA/cme to 23. 15 mA/cme, and the corresponding solar cell conversion efficiency from 1.1 ~ to 1.92 ~//0. This p-n modulation technique can be an important reference to the printed thin film solar cells.
出处 《光子学报》 EI CAS CSCD 北大核心 2013年第1期13-18,共6页 Acta Photonica Sinica
基金 上海市科委科技基金(No.10540500700) 上海市重点学科第三期(No.S30502)资助
关键词 Cu2SnS3薄膜太阳能电池 非真空印刷法 In2S3 Cu2SnS3 p-n结调制技术 CuzSnS3 thin film solar cell Non-vacuum printing technology In2S3/Cu2SnS3 p-njunction modulation technique
  • 相关文献

参考文献23

  • 1GUTER W, SCHONE J, PHILIPPS S P, et al. Current- matched triple, unction solar cell reaching 41. conversion efficiency under concentrated sunlight[J].Applied Physics Letters, 2009, 94(22): 223504.
  • 2李辉,汪韬,李宝霞,赛晓峰,高鸿楷.GaInP_2/GaAs/Ge叠层太阳电池材料的低压MOCVD外延生长[J].光子学报,2002,31(2):209-212. 被引量:4
  • 3KING R R, LAW D C, EDMONDSON K M, et al. 400/00 efficient metamorphic GaInP/GaInAs/Ge muhijunction solar cells[J]. Applied Physics Letters, 2007, 90(18) : 188516-1 3.
  • 4徐钦峰,叶青,瞿荣辉,方祖捷.Influence of thermal effect on multi-junction GaInP/GaAs/Ge concentrating photovoltaic system[J].Chinese Optics Letters,2010,8(4):354-356. 被引量:3
  • 5SHOCKLEY W, QUEISSER H J J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3) : 510-511.
  • 6VOS A D. Detailed balance limit of the efficiency of tandem solar cells [J~. Journal of Physics D: Applied Physics, 1980, 13(5): 839-846.
  • 7NISHIWAKI S, SIEBENTRITT S, WAI.K P, et al. A stacked ehalcopyrite thin-film tandem solar cell with 1. 2 V open-circuit vohage[J].Progress in Photovoltaies : Research and Applications, 2003, 11(4): 243-248.
  • 8刘宝琦,赵晓鹏.混合植物染料敏化的太阳能电池性能[J].光子学报,2006,35(2):184-187. 被引量:12
  • 9THAMPI K R, GRATZEL M, BREMAUD D, et al. Nanocrystalline dye-sensitized solar ceil/copper indium gallium selenide thin-film tandem showing greater than 15 conversion efficiency[J]. Applied Physics Letters, 2006, 88 (20) : 203103.
  • 10KIM J Y, LEE K, COATES N E, et al. Efficient tandem polymer solar cells fabricated by all solution processing[J].Science, 2007, 317(5835) : 222-225.

二级参考文献36

  • 1郑建邦,任驹,郭文阁,赵建林.电化学染料增感对聚苯胺/硅异质结电池的影响[J].光子学报,2006,35(1):47-51. 被引量:1
  • 2高鸿楷,赵星,何益民,杨青,朱李安.GaAs/Ge的MOCVD生长研究[J].光子学报,1996,25(6):518-521. 被引量:4
  • 3戴松元,王孔嘉,邬钦崇,王瑜.NPC电池高光电转换效率原因探讨[J].太阳能学报,1996,17(3):220-225. 被引量:14
  • 4高鸿楷 吴龙胜 等.新型空间太阳能电池研究.1997年全国GaAs及其有关化合物会议资料[M].湖南张家界:-,1997,11.354-355.
  • 5REPINS I, CONTRERAS. M A, BRIAN Egaas, et al. 19.9%-efficient ZnO/CdS/CulnGaSe2 solar cell with 81. 2% fill factor[R]. Prog Photovolt: ResAppl, 2008, 16, 235-239.
  • 6WANG Xue-ge LI Sheng S, KIM W K, et al. Investigation of rapid thermal annealing on Cu(In,Ga)Se2 films and solar cells [J]. Solar Energy Materials & Solar Cells, 2006, 90:2855-2866.
  • 7LIU Fang-fang, HE Qing, LI Feng-yan, et al. The influence of CIGS thin film composition on performance of solar cell[J]. Chinese Journal of Semiconductors, 2005, 26 (10) : 1954- 1958.
  • 8CONTRERAS M A, TUTTLE J R, GABOR A, et al. High efficiency Cu(In,Ga)Se2-based solar cells: Processing of novel absorber structures[C]. Conference Record of the 24th IEEE Photovoltaics Specialists Conference, Waikoloa, HI, December 1994,68-75.
  • 9HANNA G, JASENEK A, RAU U, et al, Influence of the Ga-content on the bulk defect densities of Cu(In, Ga)Se2 [J]. Thin Solid Film, 2001, 387(1-2) : 71-78.
  • 10AKIRA Yamada, HISASHI Miyazaki, RUI Mikami , et al. Improved performance of Cu(InGa)Se2 thin film solar cells with high Ga composition using rapid thermal annealing process [C]. 3rd World Conference Photovoltaic Energy Conversion, Osaka, Japan, May 11-18, 2003,2859-2863.

共引文献17

同被引文献40

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部