期刊文献+

适配子识别技术在真菌毒素快速分析中的应用 被引量:17

Application of Aptamer Identification Technology in Rapid Analysis of Mycotoxins
下载PDF
导出
摘要 适配子是近几年来通过指数富集配基的系统进化技术(SELEX)体外筛选得到的一类与目标分子高特异性结合的寡聚核苷酸片段。适配子作为一个优于抗体的新型识别分子,已在食品快速检验、环境检测、新药研发、临床诊断和治疗以及毒理研究等领域展示了良好的应用前景。本文阐述了适配子识别靶物质的结构基础及其特性,归纳了目前已筛选出的真菌毒素适配子序列,总结了适配子在真菌毒素前处理,适配子光学分析技术和电化学分析技术在单种和多种真菌毒素检测中的应用突破,并展望了适配子识别技术在真菌毒素分析领域的发展趋势。 Aptamers are oligonucleotides fragments, such as ribonucleic acid (RNA) and single-strand deoxyribonucleicacid (ssDNA) or peptide molecules that can bind to their targets with high affinity and speci- ficity. For generation of artificial ligands, they are isolated from combinatorial libraries of synthetic nucleic acid by exponential enrichment, via an in vitro iterative process of adsorption, recovery and reamplification known as systematic evolution of ligands by exponential enrichment (SELEX). As new recognition molecules, aptamers display better prospects than antibodies in the fields of rapid analysis of food analysis, environmental monitoring, new drug development, clinical diagnosis and treatment, toxicological studies, etc. The structural bases, characteristics of combination between aptamers and analytes are elaborated in this article. Also, aptamer sequences of mytoxins are listed. Furhter, the application of aptamers identification technology for the rapid analysis of myeotoxins is summarized. These analytical applications involve extraction and purification of the sample, aptamer based optical analysis techniques and electrochemical analysis techniques for the rapid detection of single mycotoxin and simultaneous detection of various mycotoxins. Finally, the future development trends of aptamer identification technology in the field of mycotoxins analysis are prospected.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第2期297-306,共10页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(Nos.81274072 81173539) 教育部长江学者和创新团队发展计划项目(No.IRT1150)资助
关键词 核酸适配子 真菌毒素 评述 Aptamer Mycotoxins Review
  • 相关文献

参考文献69

  • 1Song K M,Lee S,Ban C.Sensors,2012,12(1):612-631.
  • 2Hye J L,Byoung C K,Kyung W K,Young K K,Jungbae K,Min K O.Biosen.Bioelectron.,2009,24(12):3550-3555.
  • 3Huang Y F,Shangguan D,Liu H,Phillips J A,Zhang X,Chen Y,Tan W.Chem Bio Chem.,2009,10(5):862-868.
  • 4Bagalkot V,Zhang L F,Levy-Nissenbaum E,Jon S Y,Kantoff P W,Langer R,Farokhzad O C.Nano.Lett.,2007,7(10):3065-3070.
  • 5Battig M R,Soontornworajit B,Wang Y.J.Am.Chem.Soc.,2012,134(30):12410-12413.
  • 6Hu R,Zhang X B,Kong R M,Zhao X H,Jiang J H,Tan W H.J.Mater.Chem.,2011,21(41):16323-16334.
  • 7Lee J F,Stovall G M,Ellington A D.Curr.Opin.Chem.Biol.,2006,10(3):282-289.
  • 8Bruno J G,Richarte A M,Carrillo M P,Edge A.Biosen.Bioelectron.,2012,31(1):240-243.
  • 9Lamont E A,He L L,Warriner K,Labuza T P,Sreevatsan S.Analyst,2011,136(19):3884-3895.
  • 10Tang J,Yu T,Guo L,Xie J,Shao N,He Z.Biosen.Bioelectron.,2007,22(1):2456-2463.

二级参考文献24

共引文献52

同被引文献300

引证文献17

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部