期刊文献+

基于ASIFT的医学图像配准算法 被引量:2

Medical Image Registration Algorithm Based on ASIFT
下载PDF
导出
摘要 对ASIFT算法的原理进行了分析,针对医学图像配准鲁棒性强、准确性高和低耗时率的要求,设计出基于ASIFT的医学图像配准算法。该算法首先通过ASIFT算法提取图像特征点,接着用欧式距离筛选出匹配的特征点,最后实现参考图像与浮动图像之间的配准。该算法较好地解决了其他同类型算法中存在的提取的特征点数量少、特征点匹配的精确度不高、不能对扭曲变形的仿射图像配准等问题。实验结果表明,该算法不仅提高了配准的精确度和准确性,也提高了配准的稳定性和可靠性。 This paper analyzes the principle of ASIFT algorithm. For medical image registration of high robustness, high accuracy and low consumption rate, this paper proposes a medical image registration algorithm based on ASIFT. This algorithm extracts feature points from images by the ASIFT algorithm, then matches the feature points by the Euclidean distance, and achieves the medical image registration between two images at last. The algorithm effectively deals with the problems such as less feature points collected, inaccuracy matching appeared in feature points, being incapable to registration on distorted affine image, etc. , which exist in other algorithms. The experimental result verifies that the algorithm not only improves the registration accuracy and precision, but also enhances the stability and reliability of the registration.
出处 《安庆师范学院学报(自然科学版)》 2013年第1期38-41,47,共5页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省高等学校省级优秀青年人才基金项目(2012SQRL102)资助
关键词 医学图像配准 特征点 特征提取 特征匹配 ASIFT SIFT medical image registration, feature point, feature extracting, feature matching, ASIFT, SIFT
  • 相关文献

参考文献11

  • 1Kirankumar Y,Devi S S.Transform-based Medical Image Fusion[J].International Journal of Biomedical Engineering and Technol-ogy,2007,1(1):101-110.
  • 2张强,周海银,王炯琦.基于局部方差和高通滤波的小波变换图像融合[J].计算机仿真,2008,25(8):223-226. 被引量:7
  • 3许鸿奎,江铭炎,杨明强.基于改进光流场模型的脑部多模医学图像配准[J].电子学报,2012,40(3):525-529. 被引量:23
  • 4Z itov B,F lusser J.Image registration method s:A survey[J].Image and Vision Computing,2003,21(11):977-1000.
  • 5卢振泰,冯衍秋,冯前进,陈武凡.基于主相位一致性的医学图像配准[J].电子学报,2008,36(10):1974-1978. 被引量:21
  • 6Yang G,Stew art C V,Sofka M,et al Registration of challengingimage pairs:initialization,estimation,and decision[J].IEEETrans.Pattern Analysis and Machine Intelligence,2007,9(11):1973-1989.
  • 7谷宗运,吕皖丽,罗斌.基于SIFT的区域复制窜改检测算法[J].计算机应用研究,2011,28(12):4760-4762. 被引量:1
  • 8Lowe D G.Distinctive Image Features from Scale-invariantKeypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Morel J M and Yu G.ASIFT:A new framework for fully affineinvariant image comparison[J].SIAM Journal on Imaging Sci-ences,2009,2(2):438-469.
  • 10Yu G and Morel J M.A fully affine invariant image comparisonmethod[C].Proc.of 2009 IEEE International Conference on A-coustics,Speech and Signal Processing,Taipei,2009:1597-1600.

二级参考文献39

  • 1Brown LG. A survey of image registration techniques[J]. ACM Computing Survey, 1992,24 (4) :325 - 376.
  • 2B. Zitova, J. Flusser. Image registration methods: A survey [ J ]. Image and Vision Computing, 2003,21 ( 11 ) : 977 - 1000.
  • 3J B Antoine Maintz,M A Viergever. A survey of medical image registration [J].Medical Image Analysis, 1998,2 ( 1 ) : 1 - 36.
  • 4F Maes, A Collignon, Dirk Vandermeulen, et al. Multimodality image registration by maximization of mutual information [ J]. IEEE Trans on Medical Imaging, 1997, 16(2) : 189 - 198.
  • 5Peter Kovesi, Image features from phase congruency[J]. Journal of Computer Vision Research, 1999,1 (3) : 1 - 26.
  • 6Morrone, M. C, Owens, R. A. Feature detection from local energy[J]. Pattern Recognition Letters, 1987,6(5) :303 - 313
  • 7Peter Kovesi. Phase congruency detects comers and edges[A]. The Australian Pattern Recognition Society Conference [ C ]. Sydney, USA: IEEE, 2003.309 - 318.
  • 8Peter Kovesi. Phase preserving denoising of images [ A ]. The Auslralian Pattern Recognition Society Conference[C ]. Perth WA, USA: IEEE, 1999. 212 - 217.
  • 9Zheng Liu, Robert Laganie' re. Phase congruence measurement for image similarity assessment[J].Pattern Recognition Letters, 2007,28( 11 ) : 166 - 172.
  • 10Rafael C. Gonzales, Richard E. Woods. Digital Image Processing(2nd Edition) [ M]. London: Prentice Hall, 2002.

共引文献48

同被引文献28

  • 1张柯,李海峰,王伟.浅议直升机作业在我国特高压电网中的应用[J].高电压技术,2006,32(6):45-46. 被引量:79
  • 2黄元元,何云峰.一种基于颜色特征的图像检索方法[J].中国图象图形学报,2006,11(12):1768-1773. 被引量:8
  • 3仝卫闰.基于航拍图像的输电线路识别与状态检测方法研究[D].华北电力大学,2011.
  • 4Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via syn- chronization among distributed assemblies: simulation of results from cat cortex [ J ]. Neural Computation, 1990, 2 ( 3 ) : 293 - 307.
  • 5Eitboeck H J. Eckhorn R, Arndt M, et al. A model fnr feature linking via correlated neural activity [ M ]. New York: Spring - er, 1989: 112-125.
  • 6Johnson JL, Padgett ML. PCNN models and applications [ J]. IEEE Transactions on Neural Networks, 1999, 10(3): 480-498.
  • 7Gu X D. (;uo S D, Yu D H. A new approach for automated image segmentation based on unit -linking PCNN[ C]. Prtrr of the Fi t In- ternational Conference on Machine Learning and Cybernetics. Beijing: IEEE, 2002:175 - 178.
  • 8Cui KB, Li BS, Yuan JS, Wang P. An Improved Unit - Linking PC- NN for Segmentation of Infrared Insulator Image [ J ]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (6) : 2997- 3004.
  • 9Li C H, Lee C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993, 26(4) : 617 -625.
  • 10Otsu N. A threshold selection method from gray- level histograms [ J]. Automatica, 1975, 11 (285 - 296 ) : 23 - 27.

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部