期刊文献+

基于形状自适应PCA的三维块匹配图像去噪 被引量:11

BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis
下载PDF
导出
摘要 三维块匹配法中3-D变换真实信号的稀疏表达能力较弱,针对该问题,提出一种关于图像去噪的三维块匹配(BM3D)改进算法。采用形状自适应的图像块(邻域)代替BM3D算法中的平方窗图像块,对3-D变换处理的形状自适应图像块进行PCA变换。实验结果证明,该算法能够有效去除图像的高斯噪声,提高图像的峰值性噪比和结构相似度,且在保持图像的边缘等细节信息方面性能较好,图像视觉效果有明显改善。 Aiming at the problem of the weak ability of the 3-D transform to sparsely represent the true-image data in Block Matching 3D(BM3D) algorithm, an improved algorithm of image denoising by sparse BM3D is proposed. This paper uses shape-adaptive image patches(neighborhoods) replacing square windows image block. Shape-adaptive image patches by 3-D transform processing are PCA transformed. Experimental results show that the proposed method can efficiently denoise the Gaussian noise and improve the PSNR and SSIM of image, especially in preserving image details and introducing very few artifacts.
出处 《计算机工程》 CAS CSCD 2013年第3期241-244,共4页 Computer Engineering
基金 科技部国际科技合作基金资助项目(2009DFA12870) 教育部促进与美大地区科研合作与高层次人才培养基金资助项目
关键词 形状自适应图像块 主成分分析 三维变换处理 稀疏性 图像去噪 shape-adaptive image block Principal Component Analysis(PCA) 3-D transform processing sparsity image denoising
  • 相关文献

参考文献10

  • 1Rakvongthai Y, Vo P N. Complex Gaussian Scale Mixtures of Complex Wavelet Coefficients[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3545-3556.
  • 2Goossens B, Pi'zurica A, Philips W. linage Denoising Using Mixtures of Projected Gaussian Scale Mixtures[J] 1EEE Transactions on Image Processing, 2009, 18(8) 1689-1702.
  • 3Lyu S, Simoncelli E P. Modeling Multiscale Photographic Images with Fields of Ga Mixtures[J]. IEEE Transactions on Pattern Subbands of ussian Scale Analysis and Machine Intelligence, 2009, 31(4): 693-706.
  • 4Elad M, Aharon M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries[J]. IEEE Transactions on Image Process, 2006, 15(12): 3736-3745.
  • 5Foi A, Katkovnik V, Egiazarian K. Pointwise Shape- Adaptive DCT for High-quality Denoising and Deblocking of Grayscale and Color Images[J]. IEEE Transactions on hnage Processing, 2007, 16(5): 1395-1411.
  • 6Tasdizen T. Principal Neighborhood Dictionaries for Non- local Means Image Denoising[J]. IEEE Transactions on Image Processing, 2009, 18( 12): 2649-2660.
  • 7许娟,孙玉宝,韦志辉.基于结构张量的Non-Local Means去噪算法研究[J].计算机工程与应用,2010,46(28):178-180. 被引量:7
  • 8Dabov K, Foi A, Katkovnik V, et al. Image Denoising by Sparse 3D Transform-domain Collaborative Filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
  • 9Zhang Lei, DongWeisheng, Zhang David. Two-stage Image Denoising by Principal Component Analysis with Local Pixel Grouping[J]. Pattern Recognition, 2010, 43(1), 1531-1549.
  • 10马丽红,龚紫平.频率与方向敏感SSIM的图像质量评价方法[J].计算机工程,2012,38(5):19-24. 被引量:9

二级参考文献25

  • 1Gonzalez R C,Woods R E.数字图像处理(英文版)[M].2版.北京:电子工业出版社,2002.
  • 2Buades A,CoU B,Morel J.On image denoising methods,Technical Report 2005-15[R].CMLA,2004.
  • 3Buades A, Coil B, Morel J.Neighborhood filters and PDE' s, Technical Report 2005-04[R].CMLA, 2004.
  • 4Buades A, Coll B,Morel J.Image denoising by non local averaging[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005.
  • 5Weichert J.Scale-space properties of nonlinear diffusion filtering with a diffusion tensor[R].Laboratory of Technomathematies, University of Kaiserslautern,Germany, 1994.
  • 6Weichert J.Anisotropic diffusion in image processing[D].Kaiserslautem : University of Kaiserslautem, 1996.
  • 7Weichert J.Coherence-enhancing diffusion filtering[J].Internationl Journal of Computer Vision, 1999.
  • 8Brox T,Weichert J,Burgeth B,et al.Nonlinear structure tensors[J]. Image and Vision Computing,2006.
  • 9Weickert J, Scharr H.A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance[J].Journal of Visual Communication and Image Representation,2002.
  • 10Tomasi C, Manduchi R.Bilateral filtering for gray and color images[C]//Sixth International Conference on Computer Vision, 1998.

共引文献14

同被引文献87

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部