期刊文献+

水稻类钙调磷酸酶亚基B蛋白质在逆境胁迫下的表达 被引量:7

The Expression Profiling of Rice Calcineurin B-Like Proteins in Seedlings Under Environmental Stresses
下载PDF
导出
摘要 【目的】了解水稻CBL蛋白质在逆境胁迫下的表达模式进而探讨水稻耐逆的分子机理。【方法】采用基于抗体的蛋白质组学策略,以超级杂交稻父本9311为材料,采用免疫印迹(western blotting,WB)技术调查了CBL家族主要成员在冷、热、旱、淹和盐胁迫等5种逆境中的表达特征。【结果】发现CBL1、CBL5和CBL6在冷胁迫中表达下调,CBL1和CBL2在热胁迫中表达下调,CBL1和CBL5在旱胁迫中表现下调,而CBL6、CBL8和CBL10在旱胁迫中表现上调,CBL1、CBL5、CBL6、CBL8和CBL10在淹涝胁迫中表达上调,而CBL2表现下调。【结论】鉴定了水稻在重要逆境胁迫下发生丰度变化的6个CBL蛋白质。 [ Objective ] The objective of this experiment is to investigate the expression profiling of rice calcineurin B-like (CBL) proteins and the mechanism of stress-tolerance. [ Method] The expression patterns of CBL proteins at seedling stage of super hybrid rice parental line 9311 under cold, hot, drought, submerge and salt stresses were surveyed by Western blotting (WB) via antibody-based proteomics strategy. [Result] The results indicated that the expressions of CBL1, CBL5 and CBL6 were down-regulated under cold stress, the expressions of CBL1 and CBL2 were down-regulated under hot stress, the expressions of CBL1 and CBL5 were down-regulated while CBL6, CBL8 and CBL10 were up-regulated under drought stress. The expressions of CBL1, CBL5, CBL6, CBL8 and CBL10 were up-regulated and CBL2 was down-regulated under submerge stress. [Conclusion] Six abiotic stress-related rice CBL proteins were identified.
出处 《中国农业科学》 CAS CSCD 北大核心 2013年第1期1-8,共8页 Scientia Agricultura Sinica
基金 国家自然科学基金(31171528)
关键词 水稻 免疫印迹 逆境胁迫 CBL 蛋白质表达 rice western blotting (WB) stress calcineurin B-like (CBL) protein expression
  • 相关文献

参考文献37

  • 1Wu W H, Zhang S Q, Yuan M, Zhang J. Plant Physiology. Beijing: Science Press, 2008: 444-448.
  • 2Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, 167(3): 645-663.
  • 3Das R, Pandey G K. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling: Current Genomics, 2010, 11(1): 2-13.
  • 4熊怀阳,李阳生.水稻的耐淹性状及其Sub1基因[J].遗传,2010,32(9):886-892. 被引量:10
  • 5Wa B L, Lin Y J, Mou T M. Expression office Ca2+-dcpendent protein kinases (CDPKs) genes under different environmental stresses. Federation of European Biochemical Societies Letters, 2007, 581(6): 1179-1189.
  • 6Knight H, Knight M R. Abiotic stress signalling pathways: Specificity and cross-talE Trends in Plant Science, 2001, 6(6): 262-267.
  • 7Kudla J, Batistic O, Hashimoto K. Calcium signals: The lead currency of plant information processing. The Plant Cell, 2010, 22(3): 541-563.
  • 8Sanders D, Brownlee C, Harper J F. Communicating with calciurrr The Plant Cell, 1999, 11(4): 691-706.
  • 9Trewavas A J, Malho R. Ca2+ signalling in plant cells: the big network. Current Opinion in Plant Biology, 1998, 1 (5): 428-433.
  • 10He X, Chen J, Zhang Z, Zhang J, Chen S. Identification of salt-stress responsive genes in rice (Oryza sativa L.) by eDNA array. Science in China: Life Sciences, 2002, 45(5): 477-484.

二级参考文献148

  • 1白辉,李莉云,刘国振.水稻抗白叶枯病基因Xa21的研究进展[J].遗传,2006,28(6):745-753. 被引量:23
  • 2陈永华,赵森,柳俊,严钦泉,肖国樱.水稻耐淹涝性状的遗传分析和SSR标记的研究[J].遗传,2006,28(12):1562-1566. 被引量:13
  • 3Khush GS. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol, 1997, 35(1-2): 25-34.
  • 4Sauter M. Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften, 2000, 87(7): 289-303.
  • 5Sakagami J-I, Joho Y, Ito O. Contrasting physiological re-sponses by cultivars of Oryza sativa and O. glaberrima to prolonged submergence. Ann Bot, 2009, 103(2): 171-180.
  • 6Vergara BS, Jackson B, De Datta SK. Deepwater Rice and its Response to Deepwater Stress. In: Proceedings of the Symposium on Climate and Rice Los Banos. Philippines: International Rice Research Institute, 1976, 301-319.
  • 7Perata P, Voesenek LACJ. Submergence tolerance in rice requires sub1A, an ethylene-response-factor-like gene. Trends Plant Sci, 2007, 12(2): 43-46.
  • 8Fukao T, Bailey-Serres J. Ethylene- a key regulator of submergence responses in rice. Plant Sci, 2008, 175(1-2): 43-51.
  • 9Fukao T, Harris T, Bailey-Serres J. Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice. Ann Bot, 2009, 103(2): 143-150.
  • 10Jackson MB, Ram PC. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot, 2003, 91(2): 227-241.

共引文献36

同被引文献62

  • 1李利斌,刘开昌,王殿峰,方志军,倪中福,张义荣.玉米CBL基因的生物信息学分析[J].玉米科学,2010,18(1):6-11. 被引量:16
  • 2邵敏,李明,潘小玫,王金生.Harpin_(xoo)多克隆抗体制备、鉴定与应用[J].中国农业科学,2005,38(8):1570-1573. 被引量:5
  • 3白辉,李莉云,刘国振.水稻抗白叶枯病基因Xa21的研究进展[J].遗传,2006,28(6):745-753. 被引量:23
  • 4侯智霞.草莓花芽形成和果实发育过程中IAA及ABP1的免疫化学分析[D].北京:中国农业大学,2004.
  • 5Kim K N.Stress responses mediated by the CBL calcium sensors in plants[J].Plant Biotechnology Reports,2013,7(1):1-8.
  • 6Sánchez-Barrena M J,Martínez-Ripoll M,Albert A.Structural biology of a major signaling network that regulates plant abiotic stress:the CBL-CIPK mediated pathway[J].Int.J.Mol.Sci.,2013,14(3):5734-5749.
  • 7Kleist T J,Spencley A L,Luan S.Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella,Arabidopsis,and other green lineages[J].Front.Plant Sci.,2014,5:187.
  • 8Zhang C X,Bian M D,Yu H,et al.Identification of alkaline stress-responsive genes of CBL family in sweet sorghum(Sorghum bicolor L.)[J].Plant Physiol.Biochem.,2011,49(11):1306-1312.
  • 9de la Torre F,Gutiérrez-Beltrán E,Pareja-Jaime Y,et al.The tomato calcium sensor CBL10 and its interacting protein kinase CIPK6 define a signaling pathway in plant immunity[J].Plant Cell,2013,25(7):2748-2764.
  • 10Wang M,Gu D,Liu T,et al.Over expression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J].Plant Molecular Biology,2007,65(6):733-746.

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部