期刊文献+

基于支板燃烧室的喷管化学非平衡效应 被引量:1

Nozzle chemical non-equilibrium effects based on strut combustor
原文传递
导出
摘要 采用有限体积法全隐式格式和代用燃料C12H23的10组元13步化学反应Arrhenius有限速率模型研究煤油燃料超燃冲压发动机单边膨胀喷管(SERN,Single ExpansionRamp Nozzle)内的化学非平衡流动,通过建立支板燃烧室——喷管模型有效解决了单边膨胀喷管模型的"入口薄层"问题.计算结果表明,整个单边膨胀喷管内,流动呈现化学非平衡效应,喷管入口附近区域尤其显著;非平衡流动喷管性能明显高于冻结流动,随发动机当量混合比ε增加,非平衡流动的喷管推力系数和升力系数相对冻结流动的百分比增量δ不断升高,当ε=0.8时,推力系数百分比增量δCF达到9.41%,升力系数百分比增量δCY达到16.39%,化学非平衡效应对煤油燃料超燃冲压发动机尾喷管性能的影响不可忽略. The finite volume method in implicit scheme and surrogate fuel C12H23' s l0 species and 13 step reactions Arrhenius finite-rate model were adopted to investigate the non-equilibrium chemical reaction flow in kerosene-fueled scram jet single expansion ramp nozzle (SERN) , and the ' inlet thin layer' problem in SERN model was effectually solved by establishing the strut combustor-SERN model. Numerical simulation re- suits show that the chemical non-equilibrium effect exits in the whole SERN, especially near the nozzle inlet zone ; The SERN performance with non-equilibrium chemical reaction flow is obviously higher than that with frozen flow. With the increase of engine equivalent mixture ratio (E) the 8 grows up, which is the percentage of increment about nozzle thrust coefficient and lift coefficient with non-equilibrium chemical reaction flow rela- tive to frozen flow. When the ε = 0.8, thrust coefficient increment δcF = 9.41% , lift coefficient increment δcv = 16.39% , thus the chemical non-equilibrium effect of kerosene-fueled scramjet nozzle cannot be ignored.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第1期31-36,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 超燃冲压发动机 单边膨胀喷管 煤油 支板 化学非平衡 性能 scramjet engine single expansion ramp nozzle kerosene strut chemical non-equilibrium performance
  • 相关文献

参考文献14

二级参考文献52

共引文献54

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部