期刊文献+

中文产品评论的“特征观点对”识别:基于领域本体的建模方法 被引量:16

Feature-opinion Pair Identification in Chinese Online Reviews Based on Domain Ontology Modeling Method
原文传递
导出
摘要 随着社交媒体的发展,不断增加的在线产品评论正在极大地影响电子商务市场,使得评论挖掘成为商业界与学术界共同的热点话题。针对中文产品评论的特点,本文提出一种基于领域本体的建模方法,通过建立评论挖掘模型来对产品评论的基本评价单元——"特征观点对"进行识别。该建模过程以设计科学研究方法论为指导。首先在模型设计阶段,构建面向产品评论的领域本体;然后在模型实施阶段,提出基于本体的特征观点对识别方法;最后在模型评价阶段,通过实验对评论挖掘结果进行评价。实验结果表明,本文提出的方法与其他基于统计的方法以及基于语义的方法相比,在性能上有明显提高,对克服口语化严重和语法不规范等问题具有良好的效果。此外,通过特征观点对的识别与统计,使产品评论这种非结构化文本转化为机器可读的、能理解的结构化表达并得到具有一定商业应用价值的信息。 With the development of social media, the increasing product online reviews are greatly influencing electronic market, making review mining hot topic in both business and academic circles. According to the characteristics of Chinese online review, this research proposes a novel ontology-based modeling method to build review mining model and to identify the basic appraisal expression in online reviews-" feature-opinion pair (FOP)". Guided by the design science research methodology, this paper establishes a domain ontology for product review firstly, then designs algorithms to identify feature-opinion pair based on the ontology, and conducts several experiments to evaluate the proposed review mining model. Experimental results indicate that the performance of the proposed approach in this paper is remarkably better than the two baseline methods, a statistic method and a semantic method. Furthermore, through identifying and analyzing feature-opinion pairs, the unstructured product review is converted into the structured and machine-sensible expression, and provides valuable information for business application.
出处 《系统工程》 CSSCI CSCD 北大核心 2013年第1期68-77,共10页 Systems Engineering
基金 国家自然科学基金资助项目(70971099) 中央高校基本科研业务费专项(1200219198) 上海市科技发展基金软科学研究博士生学位论文资助项目(12692193000)
关键词 中文产品评论 特征观点对 领域本体 评论挖掘模型 Chinese Online Reviews Feature-opinion Pair Domain Ontology Review Mining Model
  • 相关文献

参考文献29

  • 1Ku L,et al. Opinion extraction, summarization andtracking in news and blog corpora [C] // Proc. ofAAAI-2006 Spring Symposium on ComputationalApproaches to Analyzing Weblogs,2006 :100?107.
  • 2Zheng Y,et al. Extracting product features fromChinese customer reviews [C] // Proc. of the 3rdInt’l Conf. on Intelligent System and KnowledgeEngineering,2008 : 285 ?290.
  • 3Bloom K,et al. Extracting appraisal expressions[C]//Proc. of Conf. of the North American Chapter ofthe Association for Computational Linguistics:Human Language Technologies ? 07,2007 : 308 ?315.
  • 4Su Q,et al. Hidden sentiment association in Chineseweb opinion mining [C]//Proc. of the 17th Int,1Conf. on World Wide Web,2008: 959?968.
  • 5Zhao Y,et al. Appraisal expression recognition withsyntactic path for sentence sentiment classification[J]. International Journal of Computer Processing ofOriental Languages^2010,23(1) :21 ?37.
  • 6Hu M,Liu B. Mining and Summarizing CustomerReviews [C] // Proc. of the 10th ACM SIGKDDInt’l Conf. on Knowledge Discovery Data Mining,2004:168?177.
  • 7Liu J,et al. Opinion searching in multi-productreviews[C]//Proc. of the 6th IEEE Int,l Conf. onComputer and Information Technology,2006: 25 ?30.
  • 8Scaffidi C? et al. Red opal : Product-feature scoringfrom reviews[C]//Proc. of the 8th ACM Conf. onElectronic commerce,2007 -? 182?191.
  • 9Zhang S,et al. Extracting product features andsentiments from Chinese customer reviews [C] //Proc. of the the 7th Int? 1 Conf. on LanguageResources and Evaluation ?2010 : 1142^1145.
  • 10Kobayashi N,et al. Collecting evaluative expressionsfor opinion extraction [C]//Proc. of the IntM JointConf. on Natural Language Processing ,2004:596?605.

二级参考文献17

  • 1郑旭玲,周昌乐,李堂秋,陈毅东.基于关联规则挖掘的汉语语义搭配规则获取方法[J].厦门大学学报(自然科学版),2007,46(3):331-336. 被引量:5
  • 2谌志群,张国煊.文本挖掘与中文文本挖掘模型研究[J].情报科学,2007,25(7):1046-1051. 被引量:51
  • 3陈骏.基于语义网的文本信息分类技术研究[D].南京:南京理工大学,2007.
  • 4Song D, Bruza P, Huang Z, et al. Classifying Document Titles Based on Information Inference [ C ]. Procedings of the lgth International Symposium on Methodologies for Intelligent Systems, 2003, Japan. Berlin, Heidelberg: Springer ,2003:297-306.
  • 5Zelikovitz S. Transductive LSI for Short Text Classification Problems [ C ]. Proeeedings of the 17th International FLAIRS Conference, Miami : AAAI Press ,2004.
  • 6Sedding J, Kazakov D. WordNet-based Text Document Clustering [ C ]. Proceedings of the Third Workshop on Robust Methods in Analysis of Natural Language Data ( ROMAND ) , Geneva, 2004 : 104-113.
  • 7Sarnovsky M, Paralic M. Text Mining Workflows Constr- uction with Support of Ontologies [ C ]. Proc. of the 6th International Symposium on Applied Machine Intelligence and Informatics, SAMI' 08, January 21-22,2008, Herlany, Slovakia. Hungary : Budapest Polytechnic, 2008 : 173-177.
  • 8Selvi P, Gopalan N P. Sentence Similarity Computation Based on Wordnet and Corpus Statistics [ C ]. Interna tional Conference on Computational Intelligence and Multimedia Applications, 13-15 Dec. 2007, Sivakasi, Tamil Nadu. Washington, DC: IEEE Computer Society, 2007,1:9-14.
  • 9Shehata S. A WordNet-based Semantic Model for Enh- ancing Text Clustering [ C ]. 2009 IEEE International Conference on Data Mining Workshops,2009:477-482.
  • 10Feldman R,Hirsh H. Mining Associations in Text in the Presence of Background Knowledge [ C ]. Knowledge Discovery and Data Mining, 1996:343-346.

共引文献15

同被引文献213

引证文献16

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部