摘要
关于飞机地面空调温度优化控制问题,飞机地面空调车温度控制系统具有参考模型不精确、非线性、时变、工作环境不稳定等特点。针对实际温度控制系统中应用到的传统PID温度控制器存在超调量大、响应速度慢、抗干扰能力弱等缺点,设计了一种新的响应速度快、稳定性高和抗干扰能力强的模糊CMAC-PID控制器。温度控制器利用小脑神经网络(CMAC)较强的自适应能力,与模糊PID控制器并行工作,能够迅速、精确、稳定的达到系统所要求的温度值。用Matlab软件进行实验,结果表明控制方式有效地改善了系统的动态性能、稳态精度和鲁棒性,具有较好的工程应用前景。
The temperature control system of aircraft ground air conditioning carts has the characteristics of model inaccuracy, nonlinearity, time-varying and work environment uncertainty. The traditional PID control method com- monly used for the system has the shortcomings of high overshoot, slow response, and weak anti-interference ability and so on. This paper described the design of a new fuzzy CMAC-PID control method with fast response, good stabil- ity and strong anti-jamming variables. The method takes the advantage of a stronger adaptive ability of the cerebella network (CMAC) to work in parallel with the fuzzy PID controller, and is able to reach the temperature required by the system rapidly, accurately and stably. Matlab simulation results show that the control method effectively improves the system dynamic performance, steady-state accuracy and robustness, and has a good application prospect.
出处
《计算机仿真》
CSCD
北大核心
2013年第3期38-41,156,共5页
Computer Simulation
基金
辽宁省科学技术基金项目(20091059)
航空科学基金项目(2008ZC54007)
沈阳市人才资源开发专项基金项目(SYRC201001)