摘要
引入相应的概率建立了考虑因病死亡且输入为Berverton-Holt的离散SIS传染病模型,确定了决定其动力性态的阈值,在阈值之下模型仅存在无病平衡点,且无病平衡点是全局渐近稳定的;在阈值之上模型是一致持续的,有唯一的地方病平衡点存在,且可以猜想地方病平衡点是全局渐近稳定的.
The probability is introduced to establish the discrete-time SIS epidemicmodel which considers disease-induced mortality and has Berverton-Holt recruitment. And the threshold determining its dynamical behavior is found. Below the threshold the model only exists the disease-free equilibrium which is globally asymptoptically stable. Above the threshold the model is uniformly persistent and exists a unique endemic equilibrium which is supposesd to be globally asymptotically stable.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第5期186-192,共7页
Mathematics in Practice and Theory
关键词
离散传染病模型
动力学性态
平衡点
稳定性
discrete-time epidemic model
dynamical behavior
equilibrium
stability