期刊文献+

具有因病死亡且输人为Berverton-Holt函数的离散SIS传染病模型分析

Analysis of an SIS Epidemic Model with Disease-Induced Mortality
原文传递
导出
摘要 引入相应的概率建立了考虑因病死亡且输入为Berverton-Holt的离散SIS传染病模型,确定了决定其动力性态的阈值,在阈值之下模型仅存在无病平衡点,且无病平衡点是全局渐近稳定的;在阈值之上模型是一致持续的,有唯一的地方病平衡点存在,且可以猜想地方病平衡点是全局渐近稳定的. The probability is introduced to establish the discrete-time SIS epidemicmodel which considers disease-induced mortality and has Berverton-Holt recruitment. And the threshold determining its dynamical behavior is found. Below the threshold the model only exists the disease-free equilibrium which is globally asymptoptically stable. Above the threshold the model is uniformly persistent and exists a unique endemic equilibrium which is supposesd to be globally asymptotically stable.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第5期186-192,共7页 Mathematics in Practice and Theory
关键词 离散传染病模型 动力学性态 平衡点 稳定性 discrete-time epidemic model dynamical behavior equilibrium stability
  • 相关文献

参考文献7

  • 1John E Franke, Abdul-Aziz Yakubu. Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models[J]. J Math Biol, 2008, 57: 755-790.
  • 2Castillo-Chavez C Yakubu. A Discrete-time S-I-S models with complex dynamics[J]. Nonlinear Anal, 2001, 47: 4753-4762.
  • 3Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models[J]. Mathemztical Bioscieces and Engineering, 2007, 4(4): 699-710.
  • 4李建全,娄洁,娄梅枝.离散的SI和SIS传染病模型的研究[J].应用数学和力学,2008,29(1):104-110. 被引量:13
  • 5Allen L J S. Some discrete-time SI, SIR and SIS epidemic models[J]. Math Biosci, 1994, 124: 83-105.
  • 6Elaydi S N. An Introduction to Difference Equations[M]. Third Edition, Springer, New York, 2004.
  • 7Josef Hofbauer, Joseph W H. So. Uniform persistence and Repellors for Maps [J]. Proceedings of the American Mathematical Society, 1989, 107(4): 1129-114.

二级参考文献10

  • 1王拉娣,李建全.一类带有非线性传染率的SEIS传染病模型的定性分析[J].应用数学和力学,2006,27(5):591-596. 被引量:22
  • 2Castillo-Chavez C, Yakubu A-A. Dispersal, disease and life-history evolution[J]. Math Biosci,2001, 173(1) :35-53.
  • 3Castillo-Chavez C, Yakubu A-A. Discrete-time S-I-S models with complex dynamics[J]. Nonlinear Analysis ,2001,47(7) :4753-4752.
  • 4Zhou Y, Fergola P. Dynamics of a discrete age-structured SIS models[J]. Discrete and Continuous Dynamical System-Series B ,2004,4(3) :841-850.
  • 5Li X,Wang W.A discrete epidemic model with stage structure[J].Chaos,Solitons and fractals,2005,26(3):947-958.
  • 6Cull P. Local and global stability for population models[ J ]. Biol Gybern, 1986,54 ( 1 ) : 141- 149.
  • 7Anderson R M, may R M. Infectious Diseases of Humans, Dynamics and Control [M]. Oxford: Univ Press Oxford, 1991.
  • 8Allen L J S. Some discrete-time SI, SIR, and SIS epidemic models[ J ]. Math Biosci, 1994,124( 1 ):83- 105.
  • 9Allen L J S, Burgin A M. Comparison of deterministic and stochastic SIS and SIR models in discrete time[ J]. Math Biosci, 2000,163( 1 ) : 1-33.
  • 10李健全,张娟,马知恩.一类带有一般接触率和常数输入的流行病模型的全局分析[J].应用数学和力学,2004,25(4):359-367. 被引量:42

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部