期刊文献+

脑控:基于脑-机接口的人机融合控制 被引量:97

Brain Control:Human-computer Integration Control Based on Brain-computer Interface
下载PDF
导出
摘要 近年来,一类被称之为脑控的新型控制系统发展迅速,这是一种基于脑-机接口(Brain-computer interface,BCI)的人机融合控制系统,也是一种基于人的意念和思维的控制系统.脑控系统已被成功应用于残疾人的生活辅助、中风病人和损伤肢体的康复训练、操作员状态的实时监控、游戏娱乐和智能家居等广泛的领域.本文在简要介绍了脑控的研究背景、基本原理、系统结构和发展概况的基础上,着重对脑电信号(Electroencephalogram,EEG)模式、控制信号转换算法和应用系统研究等主要问题的研究现状,进行了较为详细的论述和分析,并探讨了进一步研究的方向和思路.最后对脑控的未来发展方向和应用前景进行了分析和展望. Recently, a new system called brain control system has been developed rapidly. Brain control system is a human-computer integration control system based on brain-computer interface (BCI), which relies on human's ideas and thinking. Brain control system has been successfully applied in wide fields, assisting disabled patients daily life, training patients with stroke or limb injury, monitoring the status of human operator, as well as entertainment and smart house etc. In this paper, the background~ basic principle, system structure and developments are firstly introduced briefly. The current research status focusing on the problems of electroencephalogram (EEG) signal pattern, control signal transfer algorithm and system application is summarized and analyzed in detail. The further research direction and thoughts are discussed. Finally, the future development of brain control is analyzed and prospects are given.
出处 《自动化学报》 EI CSCD 北大核心 2013年第3期208-221,共14页 Acta Automatica Sinica
基金 国家自然科学基金(61074113 60674089 60543005 61203127) 中央高校基本科研业务费专项资金(WH1114038)资助~~
关键词 脑控 脑-机接口 人机融合控制 脑电信号 Brain control, brain-computer interface (BCI), human-computer integration control, electroencephalogram(EEG)
  • 相关文献

参考文献128

  • 1Wolpaw J R, Birbaumer N, Heetderkd W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrono L A, Robin- son C J, Vaughan T M. Brain-computer interface technol- ogy: a review of the first international meeting. IEEE Trans- actions on Rehabilitation Engineering, 2000, 8(2): 164-173.
  • 2王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 3Vidal J J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2: 157-180.
  • 4Gazzaniga M S, Ivry R, Mangun G R. Cognitive Neuro- science. New York: W. W. Norton and Company, Inc., 2002.
  • 5Galambos R, Sheatz G C. An electroencephalography study of classical conditioning. American Journal of Physiology, 1962, 203(1): 173-184.
  • 6Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 1964, 203(4943): 380-384.
  • 7Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor con- trol. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252-259.
  • 8Mason S G, Bashshati A, Fatourechi M, Navarro K F, Birch G E. A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007, 35(2): 137 -169.
  • 9Vaughan T M , Heetderks W J, Trejo L J, Rymer W Z, Weinrich M, Moore M M, Kiibler A, Dobkin B H, Birbaumer N, Donchin E, Wolpaw E W, Wolpaw J R. Brain-computer interface technology: a review of the second international meeting. IEEE Transactions on Rehabilitation Engineering, 2003, 11(2): 94-109.
  • 10Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kiibler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature, 1999, 398(6725): 297-298.

二级参考文献124

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2王行愚,李健.论可拓控制[J].控制理论与应用,1994,11(1):125-128. 被引量:28
  • 3Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 4曹政才,付宜利,吴启迪,王树国,靳保.基于红外传感皮肤的多关节机器人自主运动方法研究[J].自动化学报,2007,33(6):664-667. 被引量:3
  • 5Mitchell T M. Machine Learning. New York: McGraw-Hill, 1997.
  • 6Teh Y W. Dirichlet processes. Encyclopedia of Machine Learning, Springer, 2010. Part 5, 280-287.
  • 7Teh Y W, Jordan M I. Hierarchical Bayesian nonparametric models with applications. Bayesian Nonparametrics Princi- ples and Practice. Cambridge University Press, 2009. 1-47.
  • 8Teh Y W, Jordan M I, Beal M J, Blei D M. Sharing clus- ters among related groups: hierarchical Dirichlet processes. In: Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2004. 1385 - 1392.
  • 9Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical Dirichlet processes. Journal of the American Statistical As- sociation, 2006, 101(476): 1566-1581.
  • 10Yakhnenko O, Honavar V. Multi-modal hierarchical Dirich- let process model for predicting image annotation and image-object label correspondence. In: Proceedings of the SIAM International Conference on Data Mining. Sparks, USA: SIAM, 2009. 281-294.

共引文献226

同被引文献649

引证文献97

二级引证文献465

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部