期刊文献+

基于简化Gabor小波的人脸识别算法研究 被引量:4

Research on Face Recognition Algorithm Based on Simplified Gabor Wavelets
下载PDF
导出
摘要 由于Gabor函数的生物特征,所以Gabor小波经常被用来进行纹理特征提取应用于人脸识别。然而由于在提取Gabor小波特征时运算复杂度高和所需运行时间长,使其不具备应用到实时的条件下,从而限制了Gabor小波在工程上的应用。本文提出了一种简化Gabor小波人脸识别算法,降低了运算复杂度,提高了特征提取的实时性,而且能取得与连续Gabor小波人脸识别算法相同的效果,并且与经典的PCA、LDA、LBP等经典算法相比取得了更好的识别率。 Gabor wavelets have commonly used for extracting texture and face recognition for its biological characteristics. However, extracting the Gabor features is computationally intensive and long run time required, so the features may be impractical for real-time applications. In this paper, we propose a set of simplified version of Gabor wavelets(SGWs) for face recognition. The simplified Gabor wavelets algorithm reduces the computationally complexity and improves the efficiency of feature extraction. Face recognition algorithm based on simplified Gabor wavelets can achieve a similar performance level to that using Gabor wavelets. When compare to the PCA, LDA, LBP and other conventional methods, our proposed method can achieve a better performance in the terms of recognition accuracy and computational complexity.
出处 《电子器件》 CAS 北大核心 2012年第6期687-691,共5页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(61231002 61273266 51075068) 教育部博士点专项基金(20110092130004)
关键词 简化Gabor小波 特征提取 LBP 人脸识别 simplified Gabor wavelets feature extraction LBP face recogniton
  • 相关文献

参考文献5

  • 1Wei Jiang,Kin-Man Lam,Ting-Zhi Shen.Efficient Edge Detection Using Simplified Gabor Wavelets[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2009,39 (4):1036-1047.
  • 2Wei Jiang.Gabor Wavelets for Image Processing[C] //2008 International Colloquium on Computing,Communication,Control,and Management,2008,1 (1):110-114.
  • 3Timo Ahonen,Abdenour Hadid,Matti Pietikainen.Face Recognition with Local Binary Pattems[C] //Lecture Notes in Computer Science,2004,Volume 3021/2004:469-481.
  • 4YU Hua,YANG Jie.A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 5Moghaddam B,Jebara T,Pentland A.Bayesian Face Recognition[J].Pattern Recognition,2000,33(11):1771-1782.

同被引文献45

  • 1Reneher A C, Christensen W F. Methods of Multivariate Analysis [ M ]. 3 Ed. Hoboken : Wiley Press ,2012:405-433.
  • 2Wang J ,Zhou Y S,Du X J ,et al. Personal Credit Assessment Based on KPCA and SVM[ C ]//Proceedings of International Conterence on Business Intelligence and Financial Engineering, Beijing: IEEE Press, 2012 : 25 - 28.
  • 3Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ]//Proceedings of Vision and Pattern Recognition IEEE Conference on Computer San Diego: IEEE Press, 200.5 :886-893.
  • 4Gentle J E, Hardle W K, Mori Y C. Handbook of Computational Statistics : Concepts and Methods [ M ]. 2nd Ed. Germany : Springer Press,2012:883-926.
  • 5Iosifidis A, Tefas A, Nikolaidis N, et al. Multi-View Human Movement Recognition Based on Fuzzy Distances and Linear Discriminant Analysis [ J ]. Computer Vision and Image Understanding ,2012,116 ( 3 ) :347-360.
  • 6Zafeiriou S, Tzimiropoulos G, Petrou M, et al. Regularized Kernel Discriminant Analysis with a Robust Kernel for Face Recognition and Verification [ J ]. IEEE Transactions on Neural Networks and Learning Systems ,2012,23 (3) :526-534.
  • 7Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[ J ]. Science,2000,290 ( 5500 ) : 2323 - 2326.
  • 8Mendoza M R, da Fonseca G C, Loss-Morais G, et al. RFMirTarget : Predicting Human MicroRNA Target Genes with a Random Forest Classifier[J]. PloS one,2013,8(7):127-153.
  • 9Boulesteix A L,Bender A,Bermejo J L,et al. Random Forest Gini Importance Favours SNPs with Large Minor Allele Frequency: Impact, Sources and Recommendations [ J ]. Briefings in Bioin- formatics ,2012,13 (3) :292-304.
  • 10Chang Y, Hu C B, Feris R, et al. Manifold Based Analysis of Facial Expression [ J ]. Image and Vision Computing, 2006,24 ( 6 ) : 605 - 614.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部