期刊文献+

防空雷达网对多隐身目标的协同检测与跟踪 被引量:11

Collaborative Detection and Tracking of Stealthy Target by Netted Radar
下载PDF
导出
摘要 针对防空雷达网对多隐身目标检测与跟踪时雷达分配问题,该文将二值粒子群优化(BPSO)用于雷达分配,结合粒子滤波,提出了一种隐身目标的协同检测与跟踪算法。该算法将雷达分配问题转化成组合优化问题,根据目标的隐身特性设计雷达分配方案(RAS),借助随机分布的检测粒子计算不同RAS对新生目标的检测概率,同时根据RAS对已跟踪目标位置的后验克拉美罗界衡量跟踪精度,采用BPSO算法在RAS中进行全局搜索,选择最优分配方案进行粒子滤波与融合跟踪。与现有算法相比,该算法不仅能够及时检测新生目标,而且能够利用组网优势持续且优化跟踪隐身目标,使网络的整体跟踪精度得到显著提高,实现多目标协同跟踪。 Focusing on the radar allocation for stealth targets detection and tracking issue in air-defense radar network, a novel collaborative detection and tracking algorithm that combines Binary Particle Swarm Optimization (BPSO) and particle filtering to cope with the radar allocation is proposed in this paper. In the proposed algorithm, Radar Allocation Schemes (RAS) are designed according to the characters of stealthy targets, and the particles distributed randomly are applied to obtain the detection probability of newborn targets. Then the tracking accuracy is measured by the Posterior Cram^r-Rao Lower Bound (PCRLB) of the tracked targets. Moreover, the BPSO is selected to search the whole RAS, and the results of particle filtering of the selected tracking radars are fused. Simulation results show that the proposed method can not only quickly identify newborn targets, but also optimize the tracking performance of the existing targets, and improve the tracking accuracy of the whole radar network compared with traditional methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第3期601-607,共7页 Journal of Electronics & Information Technology
基金 长江学者和创新团队发展计划(IRT0645) 中央高校基本科研业务费专项资金(K5051202036)资助课题
关键词 防空雷达网 协同检测与跟踪 二值粒子群优化 后验克拉美罗界 Air-defense radar network Collaborative detection and tracking Binary Particle Swarm Optimization(BPSO) Posterior Cram^r-Rao Lower Bound (PCRLB)
  • 相关文献

参考文献15

  • 1卢盈齐,祝长英.雷达组网反隐身的一种优化布站方法[J].系统工程理论与实践,2007,27(6):166-169. 被引量:15
  • 2刘先省,周林,杜晓玉.基于目标权重和信息增量的传感器管理方法[J].电子学报,2005,33(9):1683-1687. 被引量:32
  • 3Christopher M, Alfred O, Keith D, et al.. An information- based approach to sensor management in large dynamic networks[J]. Proceedings of the IEEE, 2007, 95(5): 978-999.
  • 4Jason M A and Brian R L C. Metric selection for information theoretic sensor management[C]. The 11th International Conference on Information Fusion, Cologne, 2008: 1-8.
  • 5Mark P K, Waymond R S, and Leslie M C. A framework for information-based sensor management for the detection of static targets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41(1): 105-120.
  • 6Tharmarasa R, Kirubarajan T, Jiming P, et al.. Optimization- based dynamic sensor management for distributed multitarget tracking[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(5): 534-546.
  • 7Tharmarasa R, Kirubarajan T, Sinha A, et al.. Decentralized sensor selection for large-scale multisensor-multltarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1307-1324.
  • 8赵砚,张寅生,易东云,张倩.基于PCRLB的低轨星座对自由段多目标的多传感器调度算法[J].宇航学报,2011,32(4):842-850. 被引量:9
  • 9Shirin K, Karim F, and Amjad O. Modified discrete binary PSO based sensor placement in WSN networks[C].International Conference on Computational Intelligence and Communication Systems, Bhopal, 2010: 200-204.
  • 10Li Zhi-ming and Lei Lin. Sensor node deployment in wireless sensor networks based on improved particle swarm optimization[C]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Chengdu, 2009: 215-217.

二级参考文献75

共引文献130

同被引文献68

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部