期刊文献+

一种基于混合属性数据集的异常检测方法 被引量:1

An Anomaly Detection Method Based on Mixed Attribute Dataset
下载PDF
导出
摘要 针对混合属性数据集对象间差异性度量丢失原有数据特性的问题,引入了新的差异性度量方法,构造出对象的混合属性异常因子。在此基础上提出一种新的基于混合属性数据集的局部密度异常检测算法。实验结果表明,该算法高效可行,检测精度高,且参数设置简单。 For diversity measure between the mixed attribute dataset objects lost the original data characteris- tics, a new diversity measure method is introduced, the object mixed attribute outlier factor is constructed. And a new anomaly detection algorithm is presented based on mixed attribute dataset local density. The experimental re- sults show that the algorithm is feasible, efficient, high detection precision, and simple parameter set.
出处 《科学技术与工程》 北大核心 2013年第7期1832-1835,1859,共5页 Science Technology and Engineering
基金 山东省自然科学基金(ZR2012DM010)资助
关键词 混合属性异常检测 差异度量 混合属性异常因子 局部密度 mixed attribute anomaly detection difference metrics mixed attribute outlier factor local density
  • 相关文献

参考文献10

  • 1Chandola V, Banerjee A, Kumar V. Anomaly detection: a sur- vey. ACM Computing Surveys, 2009; 41 (3) :1-58.
  • 2陈斌,陈松灿,潘志松,李斌.异常检测综述[J].山东大学学报(工学版),2009,39(6):13-23. 被引量:40
  • 3郑苗苗,吉根林.一种处理混合型属性的无监督异常入侵检测方法[J].南京师范大学学报(工程技术版),2008,8(2):68-73. 被引量:3
  • 4Jiang Shengyi, Yang Aimin. Framework of clustering-based outlier de- tection. 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. 2009.
  • 5Chen Yumin, Miao Duoqian, Zhang Hongyun. Neighborhood outlier detection. Expert Systems with Applications, 2010; 37 ( 12 ) : 8745 -8749.
  • 6陶运信,皮德常.屏蔽输入参数敏感的异常点检测新方法[J].计算机科学,2008,35(12):192-195. 被引量:2
  • 7Tao Yunxin, Pi Dechang. Unifying density-based clustering and outli- er detection. Second International Workshop on Knowledge Discovery and Data Mining. 2009.
  • 8Hadi A S, Rahmatullah Imon A H M, Werner M. Detection of outli- ers. Wiley Interdisciplinary Reviews: Computational Statistics. 2009 ; 1 ( 1 ) :57-70.
  • 9陈刚,蔡远利,穆静,杨卫丽.海量信息异常检测问题的异常概率排序算法[J].西安交通大学学报,2011,45(4):36-40. 被引量:4
  • 10Aehtert E, Kriegel H P, Reichert L Visual evaluation of outlier de- tection models. Springer-Verlag Berlin Heidelberg. 2010.

二级参考文献37

  • 1黄添强,秦小麟,叶飞跃.基于方形邻域的离群点查找新方法[J].控制与决策,2006,21(5):541-545. 被引量:16
  • 2Breunig M M, Kriegel H-P, Ng R T, et al. LOF: Identifying Density-Based Local Outliers///Proc. 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas, TX, 2000 : 93-104
  • 3Ester M, Kriegel H- P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise//Proc. 2nd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Portland, Oregon, 1996: 226-231
  • 4Zhou S, Zhao Y, Guan J, et al. A Neighborhood-Based Clustering Algorithm//Proc. 9th Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Hanoi,Vietnam, 2005:361-371
  • 5Ankerst M, Breunig M, Kriegel H - P, et al. Optics : Ordering Points to Identify the Clustering Structure//Proc. 1999 ACM SIGMOD Int'l Conf.on Management of Data. Philadelphia, PA, 1999:49-60
  • 6Keogh E,Lonardi S,Ratanamahatana C A. Towards Parameterfree Data Mining//Proc. 2004 ACM SIGKDD Int'1 Conf. on Knowledge Discovery and Data Mining. Washington, USA, 2004 : 206-215
  • 7Hawkins D M. Identification of Outliers[M]. London:Chapman and Hall, 1980
  • 8Knorr E M, Ng R T. Algorithm for Mining Distance-Based Outliers in Large Datasets//Proc. of the 24th Int'l Conf. on Very Large Database. New York, USA, 1998: 392-403
  • 9Jin W, Tung A K H, Han J, et al. Ranking Outliers Using Symmetric Neighborhood Relationship// Proc. 10th Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Singapore, 2006 : 93-104
  • 10Katayama N , Satoh S. The SR - tree ; An Index Structure for High-Dimensional Nearest Neighbor Queries//Proc. 1997 ACM SIGMOD Int'l Conf. on Management of Data. AZ, USA, 1997:369-380

共引文献45

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部