期刊文献+

广义高斯光束中光斑半径和曲率半径特性研究 被引量:1

Study on characteristics of spot radius and curvature radius of generalized Gaussian beam
下载PDF
导出
摘要 为了研究广义高斯光束特性中未曾研究过的光斑半径长短轴(wmax,wmin)的最小值位置(lwmin,lwmax)和曲率半径R1,R2两个特殊位置的突变点(lR1,lR2)之间的关系,并由它们的关系发现广义高斯光束的一些新的特殊性质,先采用abc参量法进行理论推导,得出无法得到lwmin,lwmax,lR1,lR2位置关系的简单解析解表达式,进而采用计算机软件进行数值分析,得到它们与初始点参量wmax,0,wmin,0,R1,0,R2,0以及旋转角φR1相应的关系图。结果表明,光斑半径长短轴的最小值位置始终处于曲率半径两个极值的突变位置之间,且lwmin,lwmax,lR1,lR2大致分布在l=0附近,lwmin相比较其它三者而言,出现明显不连续突变情况,这对实际普遍情况下的广义高斯光束是成立的。 In order to analyze the relationship between the minimum position (lwmin,lwmax) of the minor and major axes of Wmin Wmax the isophotes and the mutation point ( lR1 ,lR2 ) of the radius of curvature R1, R2 of the generalized Gaussian beam, which never studied before, and find some new and special nature of the generalized Gaussian beam from their relationship, at first, using the abc parameter method to carry out theoretical derivation, a simple analytical solution expression between l , l , lR1, lR2 was obtained. Secondly, after numerical simulation, the relationship figures between /Wmin,lwmax,lR1,ln2 and Wmin,0 ,Wmax ,R1,0 ,R2,0,ФR1 were obtained. The results show that lwmin, lwmax is always between lRl and/R2 , and lwmin, lwmax, lR1, lR2 is distributed near l = 0. lwmin. has serious non-continuous points other than the other three positions. This conclusion adapts to the generalized Gaussian beam in actual and general situations.
作者 黄订 邱复生
出处 《激光技术》 CAS CSCD 北大核心 2013年第2期256-260,共5页 Laser Technology
关键词 物理光学 非线性光学 广义高斯光束 abc参量法 光斑半径 曲率半径 physical optics nonlinear optics generalized Gaussian beam abc parameter method spot radius curvature radius
  • 相关文献

参考文献11

  • 1STATZ H, DORSCHNER T A, HOLTZ M, et al. Laser handbook [ M ]. 4th ed. Amsterdam, Holland : Etsevier Science Publishers, 1985:247-280.
  • 2PLACHENOV A B, KUDASHEV V N, RADIN A M. Analytic meth- od for the construction of the fundamental mode of a resonator in the form of a Gaussian beam with complex astigmatism [ J ]. Quantum E- lectron, 2007, 37 (3):290-298.
  • 3KUDASHEV V N, PLACHENOV A B, RADIN A M. Complex ABCD transformations for optical ring cavities with losses and gain [ J ]. Quantum Electronics, 1999, 29(4) : 368-373.
  • 4PLACHENOV A M, KUDASHEV V N, RADIN A M. Analytical de- scription of a Gaussian beam in a ring resonator with a nonplanar axial contour and an even number of mirrors [ J ]. Quantum Electronics, 2009, 39(3) : 261-272.
  • 5ARNAUD J A, KOGELNIK H. Gaussian light beams with general a- stiganatism [ M ]. Applied Optics, 1969, 8 ( 8 ) : 1687-1693.
  • 6GOLOVNIN L V, KOVRIGIN A I, KONOVALOV A N, et al. De- scription of propagation of a Gaussian beam with general astigmatism by the ray method and application of this method to calculation of the parameters of nonplanar ring cavities [ J ]. Quantum Electronics, 1995: 436-438.
  • 7ZHOU B K, GAO Y Zh, CHEN Zh R, et al. Laser principles[M]. Beijing : National Defense Industry Press, 2009:70-84 ( in Chinese).
  • 8LU B D. Laser optics[ M]. Beijing: Higher Education Press, 2003 : 119-163 ( in Chinese).
  • 9李宾中,吕百达.复杂像散高斯光束的并合光束特性[J].中国激光,2002,29(4):321-326. 被引量:6
  • 10吴平,吕百达.复杂像散高斯光束的变换特性[J].激光技术,2001,25(5):364-367. 被引量:1

二级参考文献21

  • 1吕百达,冯国英,蔡邦维.分析非轴对称腔的复光线数值迭代法[J].光学学报,1994,14(9):984-987. 被引量:3
  • 2吕百达,冯国英,蔡邦维.光束传输的三维模型[J].激光技术,1994,18(3):157-160. 被引量:2
  • 3冯国英,吕百达.使用参考面移动法分析非轴对称腔的特性[J].四川大学学报(自然科学版),1994,31(1):78-81. 被引量:2
  • 4A. E, Siegman. How to (Maybe) measure laser beam quality [J]. Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C. ), 1998, 17:184-199
  • 5Baida Lu, Hong Ma. Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry[J].Opt. Comm, 1999, 171(4-6):185-194
  • 6Chunqing Gao. Characterization and Transformation of Astigmatic Laser Beams [M]. Berlin: Wissenschaft und Technik Verlag, 1999
  • 7Baida Lu, Hong Ma. Coherent and incoherent combination of one-dimensional off-axis Gaussian beanms [ J ]. Optik,1999, 110(12) :575-578
  • 8GaoChunqing WeiGuanghui.Study on the beam quality of uncoupled laser diode arrays [J].中国激光,2001,10(4):241-245.
  • 9M.J. Bastianns. Wigner distribution function and its application to first-order optics [J]. J. Opt. Soc. Am..1979, 69(12) : 1710-1716
  • 10M. J. Bastianns. Wigner distribution function applied to twisted Gaussian light propagation in first-order optical systems [J]. J. Opt. Soc. Am. A, 2000, 17(12):2475-2480

共引文献6

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部