期刊文献+

基于稀疏表示模型的图像解码方法

Image Decoding Method Based on Sparse Representation Model
下载PDF
导出
摘要 为了更好地提取图像信号的稀疏特性,提出了一种多方向自回归稀疏模型及其重建算法.多方向自回归稀疏模型利用图像局部统计相关和纹理方向实现了图像稀疏表示.在基于变换的编码框架下,以编码端的变换矩阵为观测矩阵,用多方向自回归稀疏模型代替解码端的反变换.图像仿真结果表明,所提出的技术能改善JPEG图像的质量. To obtain the sparse property of signals better, a mliti-directional adaptive sparse model and recovery algorithm for it in compressive sensing were proposed. The mliti-direetional autoregressive model could use the local statistical correlation and texture directions of image to represent signal sparsely. In a transform based codec framework, the transform matrix was regarded as a measurement matrix. The traditiohal inverse transform in decoder is replaced by the muhidirectional adaptive sparse model. Simulation results over a wide range of images show that the proposed technique can improve the reconstruction quality of JPEG.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第3期420-424,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61170103) 北京市自然科学基金资助项目(4102009)
关键词 压缩感知 稀疏表示 自适应恢复算法 compressive sensing sparse representation adaptive recovery algorithm
  • 相关文献

参考文献8

  • 1CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 2CANDES E. Compressive sampling[ C ] //lnt Congress of Mathematics. Madrid: European Mathematical Society, 2006 : 1433-1452.
  • 3CANDES E, ROMBERG J. Sparsity and incoherence in compressive sampling [ J ]. Inverse Problems, 2007, 23 (3) : 969-985.
  • 4DONOHO D. Compressed sensing [ J ]. IEEE Trans on Information Theory, 2006, 52(4): 1289 - 1306.
  • 5DAUBECHIES I, FRIESE M D, MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [ J ]. Communications in Pure and Applied Mathematics, 2004, 57: 1413-1457.
  • 6FIGUEIREDO M A, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction : application to covnpressed sensing and other inverse problems [ J ]. Journal of Selected Topics in Signal Processing, 2007, 1 (4) : 586-598.
  • 7CANDES E, ROMBERG J. L1-magic: recovery of sparse signals via convex programming [ EB/OL ]. [ 2010 - 12 - 01 ]. http://www, acre. ealtech, edu/llmagic/.
  • 8WU Xiao-lin, ZHANG Xiang-jun. Model-guided adaptive recovery of compressive sensing [ C ] // Proceedings of Data Compression Conference. Washington, D. C. : IEEE Computer Society Press, 2009 : 123- 132.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部