期刊文献+

脉冲噪声环境下高斯稀疏信源贝叶斯压缩感知重构 被引量:10

Bayesian Compressed Sensing for Gaussian Sparse Signals in the Presence of Impulsive Noise
下载PDF
导出
摘要 大多数现有的压缩感知重构算法对脉冲噪声不具有鲁棒性,在脉冲噪声环境下,重构性能急剧下降,使得整个重构系统崩溃.针对此问题,本文提出了一种脉冲噪声环境下的稀疏重构算法BINSR算法,其基于贝叶斯理论,可以有效地估计出信号的支撑集和脉冲噪声中脉冲的位置,并且根据压缩感知观测序列的democracy特性,利用最小均方误差MMSE估计量,有效地估计出原信号.在此基础上,本文结合鲁棒统计学,提出自适应的ABINSR算法,使其不再依赖于信号以及噪声的统计参数.实验结果表明,BINSR算法在脉冲噪声环境下可以有效地恢复出稀疏信号,很大程度上改善了脉冲噪声环境下算法的重构性能.ABINSR算法不仅对脉冲噪声具有鲁棒性,而且可以在高斯白噪声环境下实现有效的信号重构. Most existing reconstruction algorithms are not robust to the impulsive noise,resulting in a sharp decline in reconstruction performance, so that the entire reconstruction system crashes. A sparse reconsTruction algorithm named BINSR is proposed in this paper for the impulsive noise environment. Based on the Bayesian theory, the BINSR algorithm can effectively estimate the support of the sparse signal and the impulse location of impulsive noise. In light of the democracy property of measurements, the MMSE estimate is employed in the BINSR algorithm to achieve effective estimation. And then, combining with robust statistics, a kind of adaptive algorithm termed as ABINSR is proposed in this paper so that it no longer relies on the statistical parameters of signals and impulsive noise. Simulation results demonstrate that the BINSR algorithm can effectively recover sparse signals, greatly improving the reconstruction accuracy in the presence of impulsive noise.Moreover, the ABINSR algorithm is not only robust to the impulsive noise but also effective in the additive white Gaussian environment.
作者 季云云 杨震
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第2期363-370,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.60971129 No.61201326 No.61271335) 国家973重点基础研究发展计划(No.2011CB302903) 江苏省普通高校研究生科研创新计划(No.CXLX11-0408) 江苏省高校自然科学研究项目(No.12KJB510021) 南京邮电大学校科研基金(No.NY211039) 南京农业大学工学院引进人才科研启动基金(No.rcqd11-02)
关键词 脉冲噪声 压缩感知 贝叶斯理论 鲁棒统计学 impulsive noise compressed sensing Bayesian theory robust statistics
  • 相关文献

参考文献31

  • 1Donoho D L. Compressed sensing E J]. IEEE Transactions on Information Theory, 2006,52(4) : 1289 - 1306.
  • 2Cancles E J, Tao T. Decoding by linear programming [ J]. 1EEE Transactions on Information Theory, 2005, 51 (2): 4203 - 4215.
  • 3Tasig Y,Donoho D L. Extensions of compressed sensing[ J]. Signal Processing, 2006,86 (3) : 533 - 548.
  • 4孙林慧,杨震,叶蕾.基于自适应多尺度压缩感知的语音压缩与重构[J].电子学报,2011,39(1):40-45. 被引量:18
  • 5叶蕾,杨震,王天荆,孙林慧.行阶梯观测矩阵、对偶仿射尺度内点重构算法下的语音压缩感知[J].电子学报,2012,40(3):429-434. 被引量:22
  • 6Tibshirani R. Regression shrinkage and selection via the lasso E J] .Journal Royal Statistical Society B, 1996,58:267 - 288.
  • 7Dai W,Milenkovic O. Subspace pursuit for compressive sensing E J]. IF.EF. Transactions on Information Theory, 2009, 55 (5) : 2230 - 2249.
  • 8Ji S H, Xue Y, Carin L. Bayesian compressive sensing [ J ]. 111.1. Transactions on Signal Processing, 2008,56(6) : 2346 - 2356.
  • 9Schniter P,Potter L C,Ziniel J. Fast Bayesian matching pursuit [ A]. Information Theory and Applications Workshop-Confer- ence Proceedings[ C]. San Diego, CA, USA, 2008.326 - 333.
  • 10I Maronna R A,Martin R D,Yohai V J.Robust Statistics: The- ory and Methods[ M] .New York:John Wiely & Sons,2006.

二级参考文献24

  • 1D Donoho.Compressed sensing[J].IEEE Trans on InformationTheory,2006,52(4):1289-1306.
  • 2E Candès.Compressive sampling[A].Proceedings of the Inter-national Congress of Mathematicians[C].Madrid,Spain:Euro-pean Mathematioal Society Publishing House,2006.1433-1452.
  • 3D L Donoho,Y Tsaig.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 4M Andrecut,R A Este,S A Kauffman.Competitive optimiza-tion of compressed sensing[J].Journal of Physics A:Mathe-matical and Theoretical,2007,40(16):299-305.
  • 5Giacobello D,Christensen M G,Murthi M N,Jensen S H,Moonen M.Retrieving sparse patterns using a compressedsensing framework:Applications to speech coding based onsparse linear prediction[J].Signal Processing Letters,IEEE,2010,17(1):103-106.
  • 6J F Gemmeke,B Cranen.Using sparse representations for miss-ing data imputation in noise robust speech recognition[A].Eu-ropean Signal Processing Conf,(EUSIPCO)[C].Lausanne,Switzerland:EUSIPCO,2008.987-991.
  • 7H Luo,G Pottie.Routing explicit side information for datacompression in wireless sensor networks[A].Int Conf on Dis-tirbuted Computing in Sensor Systems(DCOSS)[C].MarinaDel Rey,CA:V K Prasanna Kumar,2005.75-88.
  • 8D Takhar,J Lsaka,M Wakin.A new compressive imagingcamera architecture using optical domain compression[A].Pro-ceedings of SPIE[C].Bellingham WA:International Societyfor Optical Engineering,2006:6065.
  • 9MichaelLustig,DavidDonoho,John M Pauly.SparseMRI:Theapplication of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 10P Borgnat,P Flandrin.Time-frequency localization from spar-sity constraints[A].IEEE Int Conf on Acoustics,Speech,andSignal Processing(ICASSP)[C].Piscataway:Institute ofElectrical and Electronics Engineers Inc,2008.3785-3788.

共引文献35

同被引文献96

  • 1赵圣,崔牧凡,尤磊,王鸿鹏.基于小型麦克风阵列的声源定位技术[J].华中科技大学学报(自然科学版),2013,41(S1):188-191. 被引量:11
  • 2卓颉,孙超.多级恒模阵对目标方位估计性能的实验研究[J].声学学报,2004,29(6):551-556. 被引量:3
  • 3徐垦.交流信号真有效值数字测量方法[J].华中科技大学学报(自然科学版),2006,34(2):51-54. 被引量:25
  • 4张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 5袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学技术出版社,2002.96.
  • 6DONOHO D L. Compressed sensing [ J ]. IEEE Transactions on In- formation Theory,2006,52 (4) : 1289 - 1306.
  • 7CANDES E. Compressive sampling [ C ] // Proceedings of the Inter- national Congress of Mathematics. 2006,3 : 1433 - 1452.
  • 8DONOHO D L, TSAIG Y, STACK J L. Sparse solution of underde- termined linear equation by stagewise orthogonal matching pursuit [ J]. IEEE Transactions on Information Theory,2012,58 ( 2 ) : 1094 -1121.
  • 9CANDES E, ROMBERG J,TAO T. Robust uncemtainty principles: Exact signal reconstruction from highly incomplete frequency infor- mation[ J]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 -509.
  • 10GONZALES J G, ARCE G R. Statistically-efficient filtering in im- pulsive environments:weighted myriad filters[ J ]. EURASIP Journal on Applied Signal Processing,2002 (1) :4 -20.

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部