期刊文献+

青藏高原湖泊沉积物硫酸盐还原菌种群分布 被引量:6

Abundance and Diversity of Sulfate-reducing Bacteria in Qinghai-Tibetan Lakes
原文传递
导出
摘要 采用聚合酶链式反应(PCR,Polymerase Chain Reaction)、变性梯度凝胶电泳(DGGE,Denaturing Gra-dient Gel Electrophoresis)与实时荧光定量聚合酶链式反应(Q-PCR,Quantitative PCR)相结合的综合分析技术,研究了青藏高原洱海、青海湖、尕海1、尕海2、小柴旦湖沉积物硫酸盐还原菌多样性及丰度。研究结果显示,5个盐湖沉积物中dsrB(编码亚硫酸还原酶β亚基,为硫酸盐还原菌所共有)基因的丰度为每克沉积物1.71×108~1.55×109拷贝,与盐度无明显相关性;所获得的dsrB基因序列分属于3个科:Desulfobacter-aceae,Desulfobulbaceae和Peptococcaceae。其中,Desulfobacteraceae科是主要类群。硫酸盐还原菌多样性(DGGE结果)与盐度呈现出负相关性。故在所研究的盐湖中,盐度可能不是影响硫酸盐还原菌种群分布的唯一因素,可能还受其它未知环境因素的影响,有待于进一步研究。 The abundance and diversity of sulfate-reducing bacteria in sediments collected from six lakes (Erhai Lake, Qinghai Lake, Gabail Lake, Gahai2 Lake, Xiaochaidan Lake, and East Dabsan Lake) on Qinghai-Tibet Plateau were investigated by using an integrated approach including polymerase chain reac- tion( PCR), denaturing gradient gel electrophoresis (DGGE), and quantitative PCR (qPCR). The re- suits show that the dsrB gene ( encoding for ~3-subunit of the dissimilatory sulfite reductase) abundance in the studied saline lakes ranges from 1.71 x l0s to 1.55 x 109 copies per gram of sediments, which did not show apparent relationship with salinity; The retrieved DGGE band sequences were affiliated with Desul- fobacteraceae, Desulfobulbaceae and Peptoeoccaceae, and Desulfobacteraceae sequences were dominant. The DGGE-based dsrB gene diversity decreased as salinity increase. Taken together, salinity may not be the sole factor controlling the abundance and diversity of sulfate reducing bacteria in Qinghai-Tibetan lakes, but other unknown environmental factors may contribute, which awaits further investigation.
出处 《盐湖研究》 CSCD 2013年第1期7-13,共7页 Journal of Salt Lake Research
基金 国家自然科学基金青年科学基金项目(41002123) 国家自然科学基金重点项目(41030211) 国家自然科学基金创新群体项目(41121001)
关键词 dsrB基因 DGGE 硫酸盐还原菌 青藏高原湖泊 dsrB gene DGGE Sulfate-reducing bacteria Qinghai-Tibetan lakes
  • 相关文献

参考文献18

  • 1Foil M, Sorokin D Y, Lomans B, et al. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hy- persaline soda lakes[ J]. Applied and Environmental Micro- biology, 2007,73 (7) :2093 -2100.
  • 2Oremland R S, Dowdle P R, Hoeft S, et aL Bacterial dis- similatory reduction of arsenate and sulfate in meromictic Mono Lake, California [ J ]. Gecchimica et Cosmochimica Acta, 2000,64 (18) :3073 -3084.
  • 3Leloup J, Loy A, Knab N J, al. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and meth- ane zones of a marine sediment, Black Sea [ J ]. Environ- mental Microbiology, 2007,9 ( 1 ) : 131 - 142.
  • 4Seholten J,Joye S,Hollibaugh J,et al. Molecular analysis of the sulfate reducing and archaeal community in a meromictic Soda lake( Mono Lake, California)by targeting 16S rRNA, rectA, apsA, and dsrAB genes [ J ]. Microbial Ecology, 2005,50 (1) :29 -39.
  • 5Holmer M, Storkhdm P. Sulphate reduction and sulphur cy- cling in lake sediments: a review[ J]. Freshwater Biology, 2001,46 (4) :431 -451.
  • 6Butlin K R,Adams M E,Thomaa M. The isolation and culti- vat/on of sulphate-reducing bacteria[ J]. Journal of General Microbiology, 1949,3 ( 1 ) :46 - 59.
  • 7Kjeldsen K U,Loy A,Jakobsen T F,et al. Diversity of sul- fate-reducing bacteria from an extreme hypersaline sedi- ment ,Gnat Salt Lake (Utah) [ J]. FEMS Microbiology E- cology,2007,60(2) :287 -298.
  • 8Oren A. Bioenergetie aspects of halophilism[ J]. Microbiolo- gy and Molecular Biology Reviews, 1999,63 (2) :334 - 348.
  • 9Dong H. Microbial life in extreme environments: linking ge- ological and microbiological processes links between geolog- ical processes [ C ]//Dilek Y, Fumes H, Muehlenbachs K, eds. Microbial Activities & Evolution of Life, Springer Neth- erlands,2008:237 - 280.
  • 10Jiang H, Huang Q, Deng S,et al. Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau [ J ]. Extremophiles, 2010, 14 ( 4 ) : 367 - 376.

同被引文献77

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部