期刊文献+

求解多星任务规划问题的演化学习型蚁群算法 被引量:16

A learnable ant colony optimization to the mission planning of multiple satellites
原文传递
导出
摘要 任务规划在成像卫星指挥控制过程中起着非常关键的作用,在成像卫星应用系统中处于神经中枢的地位.提出了一种求解多星任务规划问题的演化学习型蚁群算法:在参数绩效知识的指导下,采用动态参数模型为下次迭代随机选择较为合理的参数组合;从优化过程中不断地抽取构件知识,采用构件知识指导人工蚂蚁在后续优化过程中构建可行方案.在蚁群算法、动态参数决策模型和构件知识的共同作用下,演化学习型蚁群算法的优化绩效得到了极大提高.采用多星任务规划问题的21个测试实例进行实验,结果表明演化学习型蚁群算法在优化性能方面优于其他两种方法. Mission planning plays a very important role in the management process of imaging satellites, and it is the hardcore of imaging satellites application systems. A learnable ant colony optimization (LACO) is proposed to the mission planning of multiple satellites. Before each iterative loop, the LACO randomly selects an appropriate parameter combination via dynamic parameter decision model according to the performance knowledge of parameters. Different than standard ant colony optimization, the LACO extracts some available component knowledge, and applies the obtained component knowledge to guide artificial ants to construct feasible solutions in the subsequent optimization process. Under the effective cooperation of ant colony optimization, dynamic parameter decision model and component knowledge, the performance of LACO was largely improved. Twenty-one testing instances were applied to compare the performance of different approaches. Experimental results suggest that the LACO outperforms other two approaches.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第3期791-801,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71031007 71101150 71071156 61203180 71101013)
关键词 任务规划 参数绩效知识 参数动态调整 构件知识 蚁群算法 mission planning peribrmance knowledge of parameters parameter dynamic adjustment component knowledge ant colony optimization
  • 相关文献

参考文献10

  • 1Ho N B, Tay J C, Lai E M K. An effective architecture for learning and evolving flexible job-shop schedules[J]. European Journal of Operational Research, 2007, 179(2): 316-333.
  • 2Chung C J, Reynolds R G. A testbed for solving optimization problems using cultural algorithm[C]//Proceedings of the Fifth Annual Conference on Evolutionary Programming, Cambridge: MIT Press, 1996,1: 225-236.
  • 3Branke J. Memory-enhanced evolutionary algorithms for dynamic optimization problems[C]// Proceedings of Congress on Evolutionary Computation, Piscataway: IEEE Press, 1999, 1: 1875-1882.
  • 4Louis S J, McDonnell J. Learning with case-injected genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(4): 316 328.
  • 5Michalski R S. Learnable evolution model: Evolution process guided by machine learning[J]. Machine Learning, 2000, 38(1): 9-40.
  • 6Wojtusiak J. The LEM3 system for multitype evolutionary optimization[J]. Computing a~d [nformatics, 2009, 28(2): 225-236.
  • 7Reynolds R G. An introduction to cultural algorithms[C]// Proceedings of the Third Annual Conference on Evolutionary Programming, River Edge, N J: World Scientific, Singapore, 1994, 1: 131-139.
  • 8Kamall K, Jiang L J, Yen J, et al. Using Q-learning and genetic algorithms to improve the efficiency of weight adjustments for optimal control and design problems[J]. Journal of Computing and Information Science in En- gineering, 2007, 7(4): 302-308.
  • 9Juang C F, Lu C M. Ant colony optimization incorporated with fuzzy Q-learning for reinforcement fuzzy con- trol[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2009, 39(3): 597- 608.
  • 10Dorigo M, Stutzle T. Ant colony optimization[M]. Cambridge, MA: MIT Press, 2004.

同被引文献149

引证文献16

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部