期刊文献+

基于AdaBoost算法的遥感影像水体信息提取 被引量:8

Water body extraction from remote sensing image based on AdaBoost algorithm
原文传递
导出
摘要 AdaBoost算法利用每个特征构造一个简单分类器,然后将简单分类器进行训练组合成一个强分类器。算法能够充分利用每个分类器的优势并避免其劣势,得到一个最佳判别,达到提高分类精度的目的。本文利用TM影像,将影像各波段灰度、水体指数和谱间关系特征相结合,构成提取水体的强分类器,实现水体提取。实验结果表明,算法能够非常有效地、高精度地提取水体信息。 For water body extraction from RS image, previous algorithms have devoted to found a sophisticated classifier based on single feature, which can not make full use of image information and are very difficult to train complex classifier. Adaboost algorithm constructs a simple classifier using each feature, the "strong classifier" is formed after training these simple classifiers. The algorithm can make use of the advantages of the various classifiers and avoid their weaknesses, so it can get a prefer judgment and improve the classification accuracy. In this paper, the strong classifier of extracting body information was constructed after combining spectral infor- mation of each band, water index and relationship between spectrums. Using TM imagery as study data, the resuhs of experiment showed that the algorithm could extract water body information effectively and accurately.
出处 《测绘科学》 CSCD 北大核心 2013年第2期104-105,124,共3页 Science of Surveying and Mapping
基金 国家自然科学基金(41071259)
关键词 ADABOOST TM 遥感影像 水体提取 AdaBoost TM remote sensing image water body extraction
  • 相关文献

参考文献9

二级参考文献30

  • 1柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:59
  • 2濮静娟.遥感图像目视解译原理与方法[M].北京:中国科学技术出版社,1990..
  • 3陈钦峦 陈丙咸 等.遥感与像片判读[M].北京:高等教育出版社,1988..
  • 4Rundquist D, Lawson M, Queen L, et al. The Relationship Between the Timing of Summer-Season Rainfall Events and Lake-Surface Area[J]. Water Resources Bulletin, 1987, 23(3): 493-508.
  • 5Boland D H P. Trophic Classification of Lakes Using Landsat-1(ERTS-1) Multispectral Scanner Data[A]. US EPA, Office of Research and Development, Corvallis Environmental Research Laboratory[A], Corvallis, Oregon, 1976.
  • 6McFeeters S K. The Use of Normalized Difference Water Index(NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
  • 7Jensen J R. Introductory Digital Image Processing: A Remote Sensing Perspective[M]. NJ: Prentice Hall Logicon Geodynamics, Inc., 1996.
  • 8Rouse J W, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[A]. Third ERTS Symposium[C], 1973, NASA SP-351, 1: 309-317.
  • 9Gao B C. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J]. Remote Sensing of Environment, 1996, 58: 257-266.
  • 10Wilson E H, Sader S A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery[J]. Remote Sensing of Environment, 2002, 80: 385-396.

共引文献1558

同被引文献113

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部