期刊文献+

基于支持向量机和果蝇优化算法的循环流化床锅炉NO_x排放特性研究 被引量:35

Study on NO_x Emission from CFB Boilers Based on Support Vector Machine and Fruit Fly Optimization Algorithm
下载PDF
导出
摘要 为了控制循环流化床(CFB)锅炉的NOx排放量,以某热电厂300MW CFB锅炉测试数据为样本,应用支持向量机(SVM)建立NOx排放特性预测模型.针对SVM回归预测需要人为确定相关参数的不足,应用果蝇优化算法(FOA)优化SVM参数,采用不同工况下的样本数据检验FOA-SVM模型的预测性能,并将该模型的预测结果与粒子群算法(PSO)、遗传算法(GA)和万有引力搜索算法(GSA)优化的SVM模型预测结果进行了比较.结果表明:FOA-SVM模型的泛化能力较强,预测精度较高,训练时间较短,可以相对快速、准确地预测NOx排放质量浓度. To control the NO~ emission from circulating fluidized bed (CFB) boilers, a model was estab lished based on test data of a 300 MW thermal power plant using support vector machine (SVM). To over come the deficiency of SVM regression prediction in artificial determination of relevant parameters, the fruit fly optimization algorithm (FOA) was applied to optimize the SVM parameters. Prediction perform ance of the FOA-SVM model was then verified with sample data under different experimental conditions, of which the prediction results were compared with those optimized by particle swarm optimization (PSO), genetic algorithm (GA) and gravitation search algorithm (GSA). Results show that the FOA-SVM model has stronger genralization capability, higher prediction accuracy and shorter training time, which may therefore predict the mass concentration of NOX emission quickly and accurately.
出处 《动力工程学报》 CAS CSCD 北大核心 2013年第4期267-271,共5页 Journal of Chinese Society of Power Engineering
基金 国家自然科学基金资助项目(60774028) 河北省自然科学基金资助项目(F2010001318)
关键词 循环流化床锅炉 NOX排放特性 支持向量机 果蝇优化算法 模型 CFB boiler NOx emission SVM FOA algorithm model
  • 相关文献

参考文献9

二级参考文献39

共引文献2414

同被引文献382

引证文献35

二级引证文献271

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部