期刊文献+

自回归滑动平均建模中观测噪声方差估计的新方法 被引量:5

A new measurement noise estimation method for autoregressive and moving average modeling
下载PDF
导出
摘要 目前的自回归滑动平均(ARMA)建模方法由于只利用了观测数据的高阶自协方差构建Yule-Walker方程,而没有利用观测数据的低阶自协方差信息,导致观测噪声方差的估计精度不高,并且在自回归(AR)阶次p小于或等于滑动平均(MA)阶次q时无法估计出观测噪声方差.为此,本文提出了一种单独估计观测噪声方差的新方法,即先将ARMA模型近似为一高阶AR模型,再构建从观测数据1阶自协方差开始的Yule-Walker方程.由于充分利用了观测数据的统计信息,有利于提高观测噪声方差的估计精度,为后续的AR和MA参数估计精度的提高奠定了基础,也解决了p小于或等于q时观测噪声方差无法估计的问题,仿真和实验结果验证了该方法的有效性. In the existing autoregressive and moving average(ARMA) modeling methods,only the higher-order measurement autocovariances are used to form the Yule-Walker equations,so that the estimation accuracy of measurement noise variance deteriorates due to the unemployment of low-order measurement autocovariances.Moreover,if the AR order p is not greater than the MA order q,the measurement noise variance cannot be estimated in the existing methods.To deal with this problem,we propose a method for estimating the measurement noise variance independently.In this method,the ARMA model is first approximated by a higher-order AR model;then,the Yule–Walker equations of measurement autocovariances are formed with orders starting from one.Because of the full use of statistical information,the estimation accuracy of the measurement noise variance is improved.This not only lays the foundation for improving the accuracy in estimating AR and MA parameters,but also solves the problem occurred when the AR order p is not greater than the MA order q.Simulation and experiment results validated the effectiveness of the method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第2期178-185,共8页 Control Theory & Applications
基金 航空科学基金资助项目(20100851017 20100818015)
关键词 自回归滑动平均 自回归 有色噪声 白噪声 时间序列 autoregressive and moving average autoregressive colored noise white noise time series
  • 相关文献

参考文献11

二级参考文献42

共引文献70

同被引文献38

  • 1王红军,田铮.非线性时间序列建模的混合自回归滑动平均模型[J].控制理论与应用,2005,22(6):875-881. 被引量:16
  • 2赵鑫,刘红军,王军,胡丽红.时滞系统模糊整定PID控制的仿真研究[J].计算机仿真,2006,23(11):211-214. 被引量:18
  • 3ALLEN W R, KABATA Z. The evolution of animal senescence[J]. Journal of Zoology, 1984,62(9): 1661 - 1667.
  • 4SHILLER R. Conversation information and herd behavior[J]. The American Economic Review, 1995,85(2): 181- 194.
  • 5BURGER M, MARKOWICH P A, PIETSCHMANN J F. Continuous limit of a crowd motion and herding model: analysis[J]. Kinetic and Related Models, 2011, 4(4): 1025 - 1047.
  • 6CELIK S. Herd behavior in world stock markets: evidence from quantile regression analysis[J]. Iktisat Isletme ve Finans, 2013, 28 (329): 75 - 95.
  • 7LEE E, LEE B. Herding behavior in online P2P lending: an empirical investigation[J]. Electronic Commerce Research and Applications, 2012,11(5): 495 - 503.
  • 8BRUNETTI C, BUYUKSAHIN B, HARRIS J H. Herding and speculation in the crude oil market[J]. Energy Journal, 2013, 34(3): 83- 104.
  • 9JIANG Z Q, ZHOU W X, SORNETTE D. Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles[J]. Journal of Economic Behavior & Organization, 2010, 74(3): 149 - 162.
  • 10CHOLETTE M E, LIU J B, DJURDJANOVIC D, et al. Monitoring of complex systems of interacting dynamic systems[J]. Applied In-telligence, 2012, 37(1): 60 - 79.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部