期刊文献+

基于盲源分离的语音降噪研究 被引量:1

Blind Source Separation for Voice De-noising
下载PDF
导出
摘要 盲源分离是近年来发展起来的一种新的信号分离技术,具有很好的应用前景.针对卷积混合模型,采用短时傅里叶变换将时域信号转化为频域,然后采用瞬时混合模型中的联合近似特征矩阵对角化算法,对频域带噪语音进行分离.从而实现语音降噪的目的,并解决了频域中存在的信号尺度和排序不确定性问题.通过在matlab上的仿真实验充分证明了该方法在语音降噪中的可行性. Blind source separation, a new signal separation technique developed in recent years, has a good prospect of application. For convolutional mixture model, the study used the short-time Fourier transform of the time domain signal into a frequency domain, and then de-noised the noisy speech signals in frequency domain with the instantaneous mixture model algorithm of joint approximate diagonalization of eigenmatri- ces, and achieved the purpose of reducing the noise in voice and resolved the problem of the uncertainty of scale and sequencing in frequency domain signal. It fully proved the feasibility of the method in voice denoising by matlab simulation.
出处 《湖北工业大学学报》 2013年第1期75-77,共3页 Journal of Hubei University of Technology
关键词 盲源分离 卷积 傅里叶变换 降噪 blind source separation convolution fourier transform de-noising
  • 相关文献

参考文献4

二级参考文献41

  • 1姜卫东,陆佶人,张宏滔.基于单个频点的水声信号盲源分离[J].电子与信息学报,2005,27(4):532-535. 被引量:5
  • 2郝志华,马孝江,王奉涛.非平稳信号的盲源分离在机械故障诊断中的应用[J].振动与冲击,2006,25(1):110-114. 被引量:15
  • 3何清波,孔凡让,朱忠奎,龙潜,刘维来.盲卷积分离及其在机械振动信号消噪中的应用研究[J].振动与冲击,2006,25(2):30-34. 被引量:7
  • 4Haykin S. Unsupervised Adaptive Filtering, vol I: Blind source separation. New York, 2000:64.
  • 5Cardoso J F, Souloumiac A. Blind beamforming for non- Gaussian signals. IEE Proc.-F, 1993; 140(6): 362--370.
  • 6Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Process., 1997; 45(2): 434--444.
  • 7Sidiropoulos N D, Bro R, Giannakis G B. Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process., 2000; 48(7): 2377--2388.
  • 8Van der Veen A J. Joint diagonalization via subspace fitting techniques. In: Proc. ICASSP2001, Salt Lake City, UT, 2001(4): 2773--2776.
  • 9Vollgraf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Process., 2006; 54(9): 3270-3278.
  • 10Parra L, Spence C. Convolutive blind separation of nonstationary source. IEEE Trans. Speech Audio Process., 2000; 3(7): 320--327.

共引文献20

同被引文献4

  • 1华强,夏哲雷,祝剑英.一种改进的变步长LMS自适应滤波算法及其仿真[J].中国计量学院学报,2012,23(3):304-308. 被引量:8
  • 2马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2003.
  • 3Comon P. Independent Component Analysis, a New Concept[J]. Signal Processing, 1994(36): 287-314.
  • 4Amari S, Cichocki A, Yang H H. A New Learning Algorithm for Blind Signal Separation. Advances in Neural Information Processing Systems[J]. MIT Press, 1996(8): 757-763.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部