期刊文献+

一种基于各向异性扩散的图像分割算法研究

Image segmentation algorithm based on anisotropic diffusion
下载PDF
导出
摘要 针对煤矿井下图像对比度小、纹理不清晰和数据量大等问题,根据各向异性扩散在图像处理中具有良好的边缘保持与增强的作用,提出一种基于各向异性扩散的图像分割算法.首先在图像分割前对原图像进行各向异性扩散运算,在消除原图像噪声的同时,更好地划分了图像的边缘和纹理区域;然后提取图像的纹理特性运用到聚类算法中,从而对图像进行分割.实验证明:与未经扩散处理的分割算法相比,基于各向异性扩散的图像分割算法不仅改善了分割效果,而且提高了计算速度. According to the characteristics of image including low contrast, unclear texture, large quantity of data etc in coal mine underground, based on the good effects of anisotropic diffusion on preservation and enhancement of edge in image processing, an image segmentation algorithm based on anisotropic diffusion is presented. Firstly, the anisotropic dif- fusion algorithm is implemented on the original image, to eliminate the noise and determine the edge and texture district better. And then clustering algorithm is applied to the texture characteristic of image to segment the image. The experimental results show that, compared with the algorithm without diffusion, the algorithm based on anisotropic diffusion improves the segmentation effect and computation speed.
出处 《天津师范大学学报(自然科学版)》 CAS 2013年第1期35-37,共3页 Journal of Tianjin Normal University:Natural Science Edition
基金 安徽省高等学校省级自然科学研究项目(KJ2011Z354) 淮南市科技计划资助项目(2011A08017)
关键词 图像分割 各向异性扩散 模糊C-均值(Fuzzy C-Mean FCM)聚类 边缘保持 纹理特征 image segmentation anisotropic diffusion fuzzy C-mean clustering edge preservation texture characteristic
  • 相关文献

参考文献16

  • 1袁小平.基于小波变换模极大值的煤矿岩层图像边缘检测处理[J].计算机工程与设计,2008,29(17):4504-4506. 被引量:5
  • 2朱景福,黄凤岗.各向异性小波收缩用于图像分割[J].中国图象图形学报,2010,15(10):1485-1490. 被引量:5
  • 3李洪艳,曹建荣,谈文婷,刘彩云.图像分割技术综述[J].山东建筑大学学报,2010,25(1):85-89. 被引量:15
  • 4PERONA P,MALIK J. Scale -space and edge detection usinganisotropic diffusion[J].IEEK Transaction on Pattern Analysis andMachine Intelligence, 1990, 12(7): 629—639.
  • 5YU J H, WANG Y Y, SHKN Y Z. Noise reduction and edge dt'teo-tion via kernel anisotropic diffusion[J]. Pattern Recognition Letters,2008, 29(10): 1496—1503.
  • 6CATIE T, LIONS P, MORKL J, et al. Image selective smoothingand edge detection by nonlinear diffusion [J]. Siam Journal on Nu-merical Analysis, 1992, 29: 182—193.
  • 7GUY G,SNIK A S, YEHOSHUA Y Z. Image enhancement and de-noising by complex diffusion process[J]. IEKE Transaction on Pat-tern Analysis and Machine Intelligence, 2004, 29 ( 8) : 1021 —1036.
  • 8DUNNJ C. A fuzzy relative of the ISODATA process and its use indetecting compact well-separated cluster[J]. Journal of Cyberneticsand Systems, 1973, 3(3): 32—57.
  • 9WANG Y X, BU J. A fast and robust image segmentation using FCMwith spatial iuformation[J]. Digital Signal Processing, 2009, 11(7):1 — 10.
  • 10CAI W L, CHEN SC,ZHANG D Q. Fast and robust fuzzy C-meansclustering algorithms incorporating local information for image seg-mentation[J]. Pattern Recognition, 2007, 40(3 ) : 824—838.

二级参考文献47

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部