期刊文献+

基于正交盖氏矩和SVM的车牌字符识别 被引量:5

License Plate Character Recognition Based on Orthogonal Gegenbauer Moment and SVM
下载PDF
导出
摘要 针对传统字符特征提取算法中特征不稳定的缺点,提出一种基于正交盖氏矩的特征提取方法。采用支持向量机解决车牌字符识别问题,自动寻找对分类有较好区分能力的支持向量,由此构成的分类器可以最大化类间间隔,达到正确区分类别的目的。实验结果表明,该方法对于实时视频流中的车牌识别能取得理想效果,在解决有限样本、非线性及高维模式识别问题中表现出优越的性能,且具有适应性强和效率高的特点。 Aiming at the problem that the character features which are got by traditional feature extraction algorithm are not stable, this paper puts forward a feature extraction method based on orthogonal Gegenbauer moment. By using Support Vector Machine(SVM) method to solve the license plate character recognition problem, SVM can automatically search for classification which has good ability to distinguish between the support vector. The classifier can maximize kind of interval, and distinguish the purpose of the category. Experimental results show that this method can make the ideal effect in real-time streaming video of the license plate identification. In solving nonlinear finite sample, and high dimensional pattern recognition problem, it shows many special superior performance, and has strong adaptability and the characteristics of high efficiency.
作者 王桂文 孙涵
出处 《计算机工程》 CAS CSCD 2012年第13期192-195,198,共5页 Computer Engineering
关键词 盖氏矩 特征提取 字符识别 支持向量机 分类器 模式识别 Gegenbauer moment feature extraction character recognition Support Vector Machine(SVM) classifier pattern recognition
  • 相关文献

参考文献10

  • 1Khalid M H.Image Representation Using Accurate OrthogonalGegenbauer Moments[J].Pattern Recognition Letters,2011,32(1):795-804.
  • 2Hu Ming-Kuei.Visual Pattern Recognition by MomentInvariants[J].IEEE Transactions on Information Theory,1962,8(1):179-187.
  • 3孙云莲,季宇,李晶.基于正交Gegenbauer矩的车牌汉字字符识别[J].武汉大学学报(工学版),2008,41(1):125-127. 被引量:3
  • 4Vladimir N V.Statistical Learning Theory[M].New York,USA:John Wiley and Sons Inc.,1998.
  • 5杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版),2003,37(5):521-527. 被引量:119
  • 6Comes C,Vapnik V N.Support-vector Networks[J].MachineLearning,1995,20(3):273-297.
  • 7Dinh T L.Theory of Vector Optimization[M].New York,USA:Springer-Verlag,1987.
  • 8Kuhn H W,Tucker A W.Nonlinear Programming[C]//Proc.of the2nd Berkeley Symposium on Mathematical Statistics andProbabilistics.[S.l.]:IEEE Press,1951.
  • 9Franc V,Hlavac V.Multi-class Support Vector Machine[EB/OL].(2010-11-21).http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.1511.
  • 10Bredensteiner E J,Bennett K P.Multicategory Classification bySupport Vector Machines[J].Computational Optimizations andApplications,1999,12(1-3):53-79.

二级参考文献26

  • 1马丽红,张学东,赵忠夫.基于正交Legendre矩的虹膜识别算法[J].计算机应用,2006,26(4):787-790. 被引量:2
  • 2VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 3VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 4SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 5SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 6CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 7LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 8SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 9ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 10DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.

共引文献120

同被引文献41

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部