期刊文献+

一类更新跳扩散模型下的亚式期权定价 被引量:1

Pricing of asian option based on jump-diffusion process
下载PDF
导出
摘要 假设标的资产价格服从一类特殊的更新跳跃-扩散过程,即事件发生时间间隔独立同服从于Gamma分布的随机变量序列,研究了此过程下具有浮动敲定价格算术平均支付函数的亚式期权定价,并利用鞅定价方法得到其亚式期权的定价公式. This paper assumed stock price is base on a special kind of renewal jump-diffusion process, that is incident time inerval for independent and subordinate to Gamma distribution random variable sequence. Asian option with floating strike price is discussed, and the pricing formulas with jump diffusion model by means of martingale method.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期39-43,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(71171135) 浙江省教育厅科研项目(Y201225953)
关键词 更新过程 亚式期权 鞅测度 renewalprocess asian option martingale measure
  • 相关文献

参考文献10

二级参考文献32

  • 1赵建国,师恪.跳-扩散模型下的复合期权定价公式[J].新疆大学学报(自然科学版),2006,23(3):257-263. 被引量:5
  • 2COX J C,ROSS S A,RUBINSTEIN M. Option pricing:a simple approach [ J ]. Journal of Finance Econmics, 1979,7 (2) : 229 - 263.
  • 3BARRAQUAND J P. Pricing of American path - dependent contingent claim [ J ]. Mathematical Finance, 1996,3(1) :17 -51.
  • 4SHREVE S,VECER J. Options on a trade account:vacation calls, vacation, puts and passport options [ J]. Finance and Stocchastics ,2000,8 (4) :255 - 274.
  • 5VECER J. Unified Asian pricing [ J ]. Risk, 2002 ( 15 ) : 113 -116.
  • 6MERTON R C. Option pricing when underlying stock returns are discontinuous [ J ]. Journal of Economics, 1976(3) :125 - 144.
  • 7Black F, Scholos M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637-654.
  • 8Merton R C. Option pricing when underlying stock return are discontinuous[J]. Journal of Economy, 1976, 3: 125-144.
  • 9Marek Musiela, Marek Rutkowski. Martingale Methods in Financial Modelling[M](2'*d Edition). New York: Springer, 2007, 22-34.
  • 10Steven E. Shreve.Stochastic Calculus for Finance Continuous-Time Models[M]. New York: Springer 2007, 209-247.

共引文献34

同被引文献12

  • 1罗庆红,杨向群.几何型亚式期权的定价研究[J].湖南文理学院学报(自然科学版),2007,19(1):5-7. 被引量:11
  • 2HU Y,φKSENDAL B. Fractional white noise and application to finance[J].Infinite Dimensional Analysis: Quantum Probability and Related Topics, 2003,6 : 1-32.
  • 3MISHURA Y. Stochastic calculus for fractional brownian motions and related processes[M]. Berlin: Springer,2008..322-326.
  • 4ELLIOTT R, VAN DER HOEK. A general fractional white noise theory and applications to finance[J]. Mathematical Finance, 2003,13(2) : 301-330.
  • 5CHERIDITO P. Mixed fractional brownian motion[J]. Bernoulli,2001,7(6):913-934.
  • 6BENDER C,SOTTINE T, VALKEILA E. Arbitrage with fractional brownian motion[J]. Theory of Stochastic Processes, 2006,12(3) : 1-12.
  • 7CIPRIAN NECULA. Option pricing in a fractional brownian motion environment[J]. Mathematical Reports,2004,6(3) : 259- 273.
  • 8余征,闫理坦.混合分数布朗运动环境下的欧式期权定价[J].苏州科技学院学报(自然科学版),2008,25(4):4-10. 被引量:11
  • 9王志明,徐娟.分数布朗运动下红利亚式期权定价公式[J].武汉科技大学学报,2010,33(6):665-668. 被引量:4
  • 10薛红,孙玉东.分数跳-扩散过程下亚式期权定价模型[J].工程数学学报,2010,27(6):1009-1014. 被引量:16

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部