期刊文献+

基于RLS和WT的逐日太阳辐射度预测模型研究 被引量:6

THE FORECASTING MODEL RESEARCH OF DAILY SOLAR RADIATION BASED ON RLS AND WT
原文传递
导出
摘要 提出基于递推最小二乘法和小波变换的逐日太阳辐射度预测模型,根据气象数据,对不同的气候条件按照相似的日类型进行分类;对不同的日类型,建立不同的预测模型。结果表明:在日类型基础上,建立的递推最小二乘法与小波变换模型具有较高预测精度,在日照较充足的晴天,其预测精度明显高于阴天及雨天的预测精度。 There is a function relation between the sun radiation and photovoltaic power, the daily solar radiation forecasting model by use of Reeursive Least Squares (RLS) and Wavelet Transform (WT) was proposed in this paper. According to the meteorological data, the day with different conditions is classified to different day types, then built different forecasting models for different day types based on the history measurement data. The simulation results showed that the forecasting error of the model based on day types is improved, and the forecasting precision in the sunny weather is higher than the cloudy and rainy days.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第3期433-438,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(50967001) 人力资源与社会保障部留学人员科技活动项目
关键词 太阳辐射度 递推最小二乘法 小波变换 日类型 sun radiation recursive least squares (RLS) wavelet transform (WT) day types
  • 相关文献

参考文献10

二级参考文献43

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573. 被引量:104
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 4丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 5Holttinen H. Handling of wind power forecast errors in the Nordic power market[C]. 9th International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 2006.
  • 6Ernst B, Oakleaf B, Ahlstrom M L, et al. Predicting the wind[J]. IEEE Power & Energy Magazine, 2007(11): 79-89.
  • 7Sideratos G, Hatziargyriou N. Using radial basis neural networks to estimate wind power production[C]. IEEE Power Engineering Society General Meeting, Tampa, USA, 2007.
  • 8Bossanyi E A. Short-term wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-8.
  • 9Li Shuhui, Wunsch D, O'Hair E, et al. Using neural networks to estimate wind turbine power generation[C]. IEEE Power Engineering Society WinterMeeting, Columbus, USA, 2001.
  • 10Miranda M S, Dunn R W. One-hour-ahead wind speed prediction using a Bayesian methodology[C]. IEEE Power Engineering Society General Meeting, Bath, UK, 2006.

共引文献416

同被引文献107

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部