期刊文献+

基于相关性模型和神经网络的调压器测试性设计 被引量:2

Application of Neural Network Based on Dependency Mode in Design for Testability of Voltage Regulator
下载PDF
导出
摘要 为实现装甲车辆电源系统调压器智能化检测和隔离故障开展了测试性设计;首先建立了调压器仿真模型,对调节电路进行故障模式影响分析,得到所有故障模式,对两种工作状态分别构建其相关性模型并得到改进后的诊断树,在此基础上利用基于L-M改进学习算法的神经网络对模型进行网络训练和验证,并与其它学习算法进行了比较;从验证结果来看,该学习算法相对优越,且此方案能够正确检测和隔离调压器各故障模式,表明其正确性和可行性,实现了对其测试性设计的目的。 To realize the detection and isolation of these faults intelligently on the voltage regulator of armored vehicle power system, the testability research is performed. By building the voltage regulator electrocireuit simulation model and analyzing failure mode and effects, ac- quires all fault modes, designs the dependency matrix about the two kinds of work states, and then obtains fault tree model that improved, afterwards, uses the neural network based on L--M improved algorithm to train and validate the mode, which is compared with other algo- rithms. As a result, the algorithm work more perfect, and the method can detect and isolate exactly all kinds of failure modes, which indi- cates the validity and feasibility of this method, and achieve the goal of design for testability.
出处 《计算机测量与控制》 北大核心 2013年第3期577-579,共3页 Computer Measurement &Control
关键词 调压器 相关性模型 神经网络 测试性 voltage regulator dependency matrix neural network testability
  • 相关文献

参考文献6

二级参考文献11

  • 1张敬春,谷爱昱,莫慧芳.基于小波能量谱分析的电机故障诊断[J].电力系统及其自动化学报,2006,18(3):55-58. 被引量:17
  • 2CASTILLO E, GUIJARRO BERDINAS B, FONTENLA ROMERO O, et al. A very fast learning method for neural networks based on sensitivity analysis[J]. Journal of Machine Learning Research,2006,7:1159-1182.
  • 3YU SHI WEI, ZHU KE JUN, DIAO FENG QIN. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction[J]. Applied Mathematics and Computation,2008,4(1):66-75.
  • 4Jose Mauricio de Barros Bezerra, Jose Mauricio de Barros Bezerra. An Evaluation of Alternative Techniques for Monitoring Insulator Pollution[J]. IEEE Transactions on Power Delivery, 2009, 24 (4): 1773-1776.
  • 5Raghavan V. Algorithms for Sequential Fault Diagnosis [D] . Dept. of Electrical and Systems Engineering, University of Connecticut, 1996.
  • 6Clarke E M, Grumberg O, Peled D. A Model checking [M] . MIT Press, 1999: 51-59; 138-139; 141-170; 185-191.
  • 7Bryant, Randal E. Symbolic Boolean manipulation with Ordered Binary Decision Diagrams [J].ACM Computing Surveys, 1992, 293 -318.
  • 8Basten, Twan Bosnacki . Cluster-based partial order reduction [J] . Automated Software Engineering, 2004, (10) :365 - 402.
  • 9连光耀,黄考利,吕晓明,薛凯旋.基于混合诊断的测试性建模与分析[J].计算机测量与控制,2008,16(5):601-603. 被引量:21
  • 10佟亮,牛皖闽,李艳东,马吉臣.基于小波神经网络的陀螺仪故障诊断[J].计算机测量与控制,2009,17(11):2137-2139. 被引量:5

共引文献29

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部