摘要
借助计算机符号运算和齐次平衡法,研究了流体力学和等离子体物理中因环境影响导致的高阶非线性耦合因素产生的变系数(2+1)维耦合可积广义Kaup型模型.通过齐次平衡法,得到了该模型变系数之间的约束条件和Bcklund变换,求出了该模型的单孤子解、双孤子解、三孤子解以及N-孤子解的解析表达式.最后给出了相关的单孤子、双孤子、三孤子变化图形及其相关性质的分析,解释了不同的外界环境因素会影响孤立波间的相互作用,由此更好地理解在流体力学和等离子体物理中一些孤子传播的物理现象.
With symbolic computation and the homogeneous balance method, the paper studies a variable-coefficient (2 + 1)-dimensional integrability generalizations coupling Kaup-type model from the high level nonlinear factors under the influence of the environment in certain fluids and plasmas. With the homogeneous balance method, the controlling conditions among the variable co- efficients of the model are obtained and the B/~cklund Transformation as well. Then, the analytical expressions of one-, two-, three-, and N-soliton solutions are derived. Finally, analysis is made about the changing graphs and features of the relevant one-, two-, and three solitons~ the interaction among solitons and the influence of external factors are explained. This helps to understand more deeply some physical processes and phenomena of soliton propagation in certain fluids and plasmas.
出处
《北方工业大学学报》
2013年第1期49-55,共7页
Journal of North China University of Technology
关键词
变系数(2+1)维耦合可积广义Kaup型模型
齐次平衡法
Ba..cklund变换
多孤子解
N-孤子解析解表达形式
variable-coefficient (2 + 1)-dimensional integrability generalizations coupling Kaup-type model
homogeneous balance method
Baicklund Transformation
multiple-soliton solutions
analytic N-soliton solutions expression