期刊文献+

曲线回归分析在织物染色计算机配色中的应用研究 被引量:1

Research on Application of Cure Regression Analysis in Computer Color Matching for Textile Dyeing
下载PDF
导出
摘要 针对三刺激值C,M,Y与浓度之间的关系,本文在Kubelka-Munk理论的基础上,应用数学建模的方法对织物染色计算机配色进行研究,通过对实验样本数据的选取与分析,建立了在相同染料浓度下三刺激值C,M,Y与染料浓度的曲线回归模型,并对该模型进行回归分析,分析结果表明,实验数据的误差绝大部分在0.65%以内,说明该回归方程的拟合效果比较好,与C,M,Y值相对应的所求解的染料浓度比实验数据的误差小,该研究精度高,拟合效果好,能满足实际织物染色配色的需要,具有一定的实用价值。 Curve regression model of the value of C, M, Y and the concentration of dye in same dye concentration is established by the way of mathematical modeling and analysis of experiment sample data in this paper based on the fabric dyeing color matching theory, which is called Kubelka-Munk theory, in order to get the relationship of concentration of dye and its three stimulus values. Then curve regression equation can be got. With the equation being put the experiment data experiment concentration can be obtained by solving the equation. The experiment results show that the error of the experiment data is less than 0.65 % and the fitting result of the experiment curve regression equation is good enough. The error of the solution of C, M, Y value and its corresponding concentration of dye is smaller than experiment data, which can meet the requirements of actual color dyeing matching.
出处 《青岛大学学报(工程技术版)》 CAS 2013年第1期22-26,共5页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(60973158 60743004)
关键词 织物染色 计算机配色 数学建模 曲线回归 textile dyeing computer color matching mathematics modeling curve regression
  • 相关文献

参考文献5

二级参考文献44

  • 1王赟松,褚福磊,何永勇,郭丹.BP神经网络快速收敛算法研究[J].农业机械学报,2004,35(6):182-184. 被引量:17
  • 2白凤翔,曾华,伊继东,寥宁放,任意,马建坤,谢明,郭履容.基于Kubelka-Munk理论的线性规划配色法[J].涂料工业,1994,24(4):21-23. 被引量:7
  • 3左云波,张怀存.一种改进的BP网络快速算法[J].北京机械工业学院学报,2005,20(1):31-34. 被引量:13
  • 4刘严.多元线性回归的数学模型[J].沈阳工程学院学报(自然科学版),2005,1(2):128-129. 被引量:78
  • 5周开丽,康耀红.神经网络及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
  • 6Yang Ming,Lu Jianye,Wang Hong,et al.Vision-Based Real-Time Vehicle Guidance on THMR-V Part I:Unstructured Road Detection[DB/OL].[2009-04-28].http://cyberc3.sjtu.edu.cn/~ym/paper/istmolld.Ddf.
  • 7Roerdink Jos B T M,Meijster A.The Watershed Transform:Definitions,Algorithms and Parallelization Strategies[J].Fundamenta Informaticae,2001,41(1-2):187-228.
  • 8Vincent L,Soille P.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Trans Patt Anal Mach Intell,1991,13(6):583-598.
  • 9Meyer F.Topographic Distance and Watershed Lines[J].Signal Processing,1994,38(1):113-125.
  • 10Pilot European Image Processing Archive.PETS2001 Datasets[DB/OL].[2009-03-05].http://www.cvg.cs.rdg.ac-UK./PETS2001/Pets2001-dataset.html.

共引文献32

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部