期刊文献+

连续尺度复合分析核线重排列影像准稠密匹配 被引量:1

Continuous Scale Multi-change Detecting Quasi-dense Matching for Epipolar Resample Images
下载PDF
导出
摘要 高精度快速准稠密匹配是计算机视觉和摄影测量等领域的急切而富有挑战性的目标,核线约束下的一维匹配将大幅度提高匹配的速度和准确率。在核线重排影像的基础上,设计了轻量级的线状多尺度三角塔结构,并提出通过多尺度下的广义亮度Sinc序列、广义梯度序列、广义θ序列和广义中心偏离序列的极值检测,得到大量稳定特征点并进行描述,然后采用属性特征和数值描述特征在预测区间进行快速匹配。大量试验表明该方法能够稳健地快速得到分布均匀、密度较大、亚像素级精度的稳定同名点。 Quasi-dense matching with high quality and speed is an urgent and challenging goal within the search scope of computer vision and photogrammetry. One dimensional matching assisted by epipolar line would largely improve the speed and precision. The linear triangle multi-scale tower structure with light computation and high efficiency is proposed based on the epipolar resample images, and series of distinguishable sequences such as extended lumirtartce Sinc sequence, extended gradients sequence, extended θ sequence and extended bias sequence are constructed for detecting the key points on the continuous scale space. And then, the key points are described both by attribute characters and numerical label. And based on it, the quick matching is carded out during the predicted scope. Experiments show that the algorithm can reach quasi-dense matching robustly in the whole continuous scale even on distorted images in defect of features, with more couples in good topology and precision.
出处 《计算机技术与发展》 2013年第4期111-114,138,共5页 Computer Technology and Development
基金 国防预研基金(20060826(重大专项))
关键词 准稠密匹配 核线 特征匹配 计算机视觉 quasi-dense matching epipolar line feature matching computer vision
  • 相关文献

参考文献14

  • 1Li Jing, Allinson N M. A comprehensive review of current local features for computer vision [ J ]. Neuro Computing, 2008,71 (10-12) : 1771-1787.
  • 2Lowe D G. Distinctive image features from scale-invariant keypoint [ J ]. Computer Vision,2004 ( 5 ) : 91 - 110.
  • 3Bay H,Tuytelaars T, Van G L. SURF:Speeded Up Robust Features [ C ]//9th European Conference on Computer Vision. Graz,Austria: [ s. n. ] ,2006.
  • 4Stefano L D, Marchionni M, Mattoccia S. A fast area-based stereo matching algorithm[ J]. Image and Vision Computing,2004,22(12):983-1005.
  • 5Tola E, Lepetit V, Fua P. A Fast Local Descriptor for Dense Matching[ C]//CVPR. [s. 1. ]: [s. n. ] ,200$.
  • 6Xing Y J, Meng J J, Sun J, et al. An improved region-growth algorithm for dense matching [ J ]. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 18 ( 1 - 2 ) : 323 -326.
  • 7山海涛,郝向阳,马淑宇,李海滨.影像畸变对基本矩阵估计精度的影响分析[J].测绘科学技术学报,2010(1):50-53. 被引量:2
  • 8张过,潘红播,江万寿,秦绪文.基于RPC模型的线阵卫星影像核线排列及其几何关系重建[J].国土资源遥感,2010,22(4):1-5. 被引量:23
  • 9Jiang Zetao, Wu Min, Zheng Bina. A linear and aspect ratio in- variant rectification method for stereo vision[ C ]//Internation- al Conference on Computer Science and Software Engineering, IEEE CSSE 2008. Wuhan, Hubei, China : [ s. n. ], 2008 : 903 -906.
  • 10Morgan M. Epipolar Resampling of Linear Array Scanner Sc- enes[ D]. Calgary :University of Calgary ,2004.

二级参考文献42

共引文献34

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部